

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Electronic Circuits			
Course Code (according to the bylaw):	MTE 141			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	1	<u>3</u>		<u>4</u>
Course Type:		Compu	lsory	
The level to which the course was introduced:		SOPHO	MORE	
Academic Program:	<u>Mechatror</u>	nics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Dr. Ahmed	l Abu El -F	<u>ADI</u>	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

Controlled sources, semiconductor circuits and operating points, low level signal descriptions and equivalent circuits, basic circuits with FETs and bipolar transistors, logic components, frequency attenuation circuits and Bode diagram, operation amplifier circuits, AD and DA converters, power amplifier.

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acc	Program Outcomes (ARS) (according to the matrix in the program specs)		ourse Learning Outcomes
	A1,A2,D2,D3		n completion of the course, the student will be able to:
Code	Text	Code	Text
	Identify, formulate, and solve complex engineering problems by applying		Define controlled sources and their applications in circuit analysis.
engineering fundamentals, basic so and mathematics.		LO2	Discuss semiconductor circuits and operating points identification.
	Develop and conduct appropriate experimentation and/or simulation,		Analyze low-level signal descriptions and equivalent circuits.
A2	analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO4	Examine basic circuits using FETs and bipolar transistors.
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific	LO5	Develop logic components, frequency response circuits, and attenuation circuits.
D2	application; and identify the tools required to optimize this design	LO6	Construct and Bode diagrams interpreting
	Plan, manage, and implement designs of mechatronics systems, subsystems,	LO7	Design operational amplifier circuits for various applications.
D3	modules, and machine elements based on traditional and contemporary technological, professional, and computer-aided tools.		Compare A/D converters, D/A converters, and power amplifiers in terms of performance and applications.

4. Course Teaching and Learning Methods:

Direct		Information
Instructio	Indirect Instruction	Technology-
n		Assisted Learning

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$								

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Trai	ining		
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other	
1	Controlled sources	4	1	-	3	-	
2	Semiconductor circuits	4	1	-	3	-	
3	Operating points	4	1	-	3	-	
4	Low level signal descriptions	4	1	-	3	-	
5	Equivalent circuits	4	1	-	3	-	
6	Bipolar transistors	4	1	-	3	-	
7	R	evision a	and Mid Exa	m			
8	MOSFET transistors and its small signal model	4	1	-	3	-	
9	Common Source Amplifier circuits	4	1	-	3	-	
10	Multistage MOSFET Amplifier and differential amplifier	4	1	-	3	-	
11	Differential amplifier with current mirror circuits	4	1	-	3	-	
12	Operational amplifier circuits and its Application	4	1	-	3	-	

13	AD and DA converters	4	1	-	3	-	
14	Frequency attenuation circuits and Power amplifier	4	1	-	3	-	
15,16	Final Exam.						

Experiment Topics: (If any)

Serial	Experiment
1	BJT
2	PWM
3	MOSFET
4	JFET
5	Operational amplifiers
6	Differential amplifiers
7	Wheatstone bridge

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	ŧ	١.	1.%
2	Exam 2 written (Semester work)	11	١.	1.%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1 7	20	20%

6- Learning Resources and Supportive Facilities *

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	WILLIAM H.HAYT," ENGINEERING CIRCUIT ANALYSIS", 2019
(books, scientific references,	Other References	 R. Bolystad, and L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice Hall
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
	Devices/Instruments	non

Supportive	Supplies	non
facilities &	Electronic Programs	non
equipment	Skill Labs/ Simulators	non
for	Virtual Labs	non
teaching and learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr.Ahmed Abu El -FADl	Dr. Ahmed Abdalbadia
Signature	Ahmed fadl	Paraullies

Course Specification

1. Basic information:

Course Title (according to the bylaw):	<u>Digital Logic Design</u>			
Course Code (according to the bylaw):	MTE 142			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>3</u>	<u>1</u>		<u>4</u>
Course Type:		Compu	lsory	
The level to which the course was introduced:		JUNI	OR	
Academic Program:	<u>Mechatror</u>	ics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Dr.Ahmed	Abu El -F/	<u>ADI</u>	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

Introduction to Digital Concepts - Number systems, operations, and codes-Basic logic gates -Boolean Algebra and logic simplification - combinational circuits-sequential circuits flip-flops and related devices-Counters and Shift Registers- Memory and storage- Introduction to hardware description languages (HDL).

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acc	Program Outcomes (ARS) (according to the matrix in the program specs)		ourse Learning Outcomes	
	A1,A3,A10,D2,D3	Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
	Identify, formulate, and solve complex		Identify the requirements and problems of digital systems related to logic gates and numbering systems.	
A1	engineering problems by applying	LO2	Apply a systematic procedure to fulfill requirements of solving problems using logic simplification, codes, and Karnaugh map (K-map) techniques.	
А3	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO3	Design and digital circuits using logic gates implementation	
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	LO4	Search for information for developing the knowledge and skills that support life-long learning in combinational and sequential circuits.	
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design	LO5	Design logic gate–based circuits and building blocks.	
D3	Plan, manage, and implement designs of mechatronics systems, subsystems, modules, and machine elements based on	LO6	Select suitable components, devices, and materials for digital system implementation.	

traditional	and	contemp	orary
technological,	pro	fessional,	and
computer-aided			

LO7

Select and apply appropriate design methods for conventional digital systems, including combinational and sequential circuits.

4. Course Teaching and Learning Methods:

Dir Instr	uctio		Indirect Instruction						Information Technology- Assisted Learning						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
1	V	V			V	V	V								V

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Trai	ning		
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other	
1	Introduction to digital concepts	4	1	2	1	-	
2	Number systems	4	1	2	1	-	
3	Boolean Algebra and operations	4	1	2	1	-	
4	Codes-basic logic gates	4	1	2	1	-	
5	logic simplification	4	1	2	1	-	
6	K-maph	4	1	2	1	-	

7	Revision and Mid Exam					
8	Combinational circuits Sequential circuits	4	1	2	1	-
9	Counters	4	1	2	1	-
10	Decoder	4	1	2	1	-
11	• Flip Flops latch logic gates and related devices	4	1	2	1	-
12	Shift registers	4	1	2	1	-
13	Introduction to: • Memory and storage • Ics hardware description language(HDL)	4	1	2	1	-
14	Revision part 2	4	1	2	1	-
15,16	Final Exam.					

Experiment Topics: (If any)

Serial	Experiment			
1	Logic gates			
2	Logic circuits			
3	Seven Segment			
4	Latches and counters			

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	٤	١.	1.%
2	Exam 2 written (Semester work)	11	١.	1.%
3	Midterm exam	7	20	20 %

4	Final Written Exam	15, 16	40	40 %
5	Final Practical/Clinical/ Exam	10	0	10%
7	Assignments / Project /Portfolio/ Logbook	12	20	20%

6- Learning Resources and Supportive Facilities *

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	Sonali Singh, Digital Logic Design,2019
resources (books,	Other References	Mano M. and Kime C.R., "Logic and Computer Design Fundamentals", Prentece Hall, 3rd edition, 2004.
references, etc.) *	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Non
facilities & equipment	Supplies	Non
for	Electronic Programs	Non
teaching	Skill Labs/ Simulators	Non
and	Virtual Labs	Non
learning *	Other (to be mentioned)	Non

	Course Coordinator	Program Coordinator
Name	Dr.Ahmed Abu El -FADl	Dr. Ahmed Abdalbadia
Signature	Ahmed fadl	Serantica

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Statistics and Probability Theory			eory
Course Code (according to the bylaw):	MTH 105			
Department/s that participated in the teaching:	BASIC SCIENCES			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)				
Course Type:	Compulsory			
The level to which the course was introduced:	JUNIOR			
Academic Program:	ALL ENGINEERING PROGRAMS			<u>IS</u>
Institute:	Higher Technological Institute			
Name of Course Coordinator:	Ass. Prof. Tarek Nassar			ır
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			rtment
Course Specification Approval Date:	7/26/2025			

2. Course Overview (Brief summary of scientific content):

Probability, conditional probabilities, Bayes' theorem. Tendency and Dispersion Measures: Introduction, different types of data, tendency measures, variability measures, frequency distributions. Random Variables: Discrete random variables, the Hyper - geometric distribution, Binomial distribution, the Poisson distribution, Poisson approximation of binomial probabilities, continuous random variables. Moments: central moments, Skewness measures, kurtosis measures, moment generating function. Sampling Theory and Inferences: the concept Of a sampling distribution, sampling distribution of the mean, central limit theorem, tests of hypothesis and Confidence intervals for the mean, tests of hypothesis and confidence intervals for the difference between two means, tests of hypothesis and confidence intervals for the difference between two proportions, tests of hypothesis and confidence intervals of sample variance, tests of hypothesis and confidence interval for ratio of sample variances. Simple regression and correlation: Simple linear regression by least square method, validation of the model, correlation coefficient.

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

Program Outcomes (NARS/ARS) (according to the matrix in the program specs)		Course Learning Outcomes			
	(A1, A2, A4, A5, A6)	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
A1	Identify and apply the different statistical measurements for	LO1	Apply the different statistical measurements for analyzing grouped and ungrouped data.		
AI	analyzing data. Recognize the axioms of the probability	LO2	Recognize the axioms of the probability to calculate the probability for any event.		
A2	Apply techniques for calculate probabilities, expectation, and variance.	LO3	Apply several techniques of counting and calculus to calculate probabilities, mean, and variance for random variable.		
	Represent the data and compute the	LO4	Represent: box plot, stem&leaf, histogram, frequency polygon, and scatter diagram.		
A4	strength of relation between variables and estimate the regression equation	LO5	Compute the relation strength between two variables, and predict one variable by anther with the regression equation.		
A5	Classify random variables and	LO6	Connect between a random variable and density function.		
Α3	density function.	L07	Apply different type of probability distributions to solve probability problem.		
A6	Utilize engineering probability, problems, for safety requirements	LO8	Use the confidence interval method to compute the mean interval.		
AU	and apply codes of practice and standards, quality guidelines.	LO9	Use the test of hypothesis method to predict the mean interval.		

4. Course Teaching and Learning Methods:

Dir Instru			Indirect Instruction						Information Technology- Assisted Learning			-			
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
	V	V			V		V			V	√			√	

Week	Scientific content of the course	Total	Expected number of the Learning Hours			
No.	(Course Topics)	Weekly Hours	Theoretical	Training		
		Hours	teaching (lectures)	Tutorial	Lab / Practical	
1	Introduction of statistics - Organized and represent of ungrouped data	4	2	2		
2	Organized and represent of grouped data	4	2	2		
3	Determine the Spearman's and Pearson's coefficient correlation and compute the regression equation	4	2	2		
4	General revision and quiz (1)	4	2	2		
5	Introduction of probability: Sample space and Events – Counting Techniques	4	2	2		
6	Random variables Discrete and continuous and their probability distribution	4	2	2		

7	Mid Exam								
8	Probability distribution: Binomial , Poisson	4	2	2					
9	Probability distribution: normal, standard, student	4	2	2					
10	Relation between distributions	4	2	2					
11	Confidence interval to find the mean interval of the mean population	4	2	2					
12	Hypothesis Testing (The structure of a hypothesis test and testing the mean of population)	4	2	2					
13	General revision and quiz (2)	4	2	2					
14	Sheet and report	4	2	2					
15,16	Final Exam.								

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks	
1	Quiz 1 written (Semester work)	4	15	15%	
2	Quiz 2 written (Semester work)	13	15	15%	
3	Midterm exam	7	20	20 %	
4	Final Written Exam	15, 16	40	40 %	
5	Final Practical/Clinical/ Exam		0		
6	Final Oral Exam		0		
7	Assignments / Project /Portfolio/ Logbook	14	0	10%	
8	Field training		0		
9	Other (Mention)		0		

6- Learning Resources and Supportive Facilities *

Learning	The main (essential) reference (must be written in full according to	Introduction to Probability and Statistics for
resources	the scientific documentation method)	Engineers and Scientists, By Sheldon M.

(books, scientific		Ross, 2021 Elsevier, ISN: 978-0-12-824346-6, 6 th edition .
references, etc.) *	Other References	Probability and Statistics for STEM: A Course in One Semester, By E.N. Barron, J.G. Del Greco, 2022 Springer series, ISN: 978-3-031-02427-6
	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	White board
facilities & equipment	Supplies	Teaching aids and power point
for	Electronic Programs	
teaching	Skill Labs/ Simulators	
and	Virtual Labs	
learning *	Other (to be mentioned)	

	Course Coordinator	Program Coordinator
Name	Ass. Prof. Tarek Nassar	Prof. Ahmed Abd El-Gafar
Signature	Ass. Prof. Tarek Nassar	Jedlie)

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Communication & Presentation Skills					
Course Code (according to the bylaw):		HUM	108			
Department/s that participated in the teaching:	BASIC SCI	ENCES				
Total number of credit hours of the course:	Theoretical	Tutorial	Other (specify)	Total		
(according to the bylaw)	<u>2</u>	<u>1</u>		3		
Course Type:	Elective					
The level to which the course was introduced:		JUNI	OR			
Academic Program:	ALL ENGI	NEERING	PROGRAN	<u> 1S</u>		
Institute:	Highe	r Technolo	ogical Insti	itute		
Name of Course Coordinator:		DR. Ashra	af selim			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department					
Course Specification Approval Date:		7/26/2	0025			

2. Course Overview (Brief summary of scientific content):

Course Aims to provide the student with the latest knowledge about the concepts, characteristics, and types of managerial and interpersonal communications, as well as the concepts and requirement of good listening and presentation, and Developing the student's abilities and skills of effective communication, and good listening, as well as how to use the interpersonal and managerial communication methods and the presentation techniques in performance and dealing

with others inside and outside the organization. Course Contents: Concept and nature of communication – Communication model – Formal and informal communications - Interpersonal and managerial communications – Body language – Written communications (Reports and memos) – Ten Communications of effective communication – Good listening – Elements of effective presentation model – Preparation of good presentation – Carrying out presentations – Discussion and dealing with.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	ram Outcomes (NARS/ARS) ding to the matrix in the program specs)	Course Learning Outcomes				
	(A8, A9, A10)	Upon co	ompletion of the course, the student will be able to:			
Code	Text	Code	Text			
	Communicate effectively – graphically, verbally	L01	formulate e interpersonal Communication			
		LO2	embody languages communication			
A8	and in writing – with a range of audiences using	LO3	Learn types of managerial and interpersonal communications			
	contemporary tools.	LO4	Identify the main items of the of Communication technology			
	Use creative, innovative and flexible thinking and	LO5	Define the main items of the of of Presentation Skills			
А9	acquire entrepreneurial and leadership skills to anticipate and respond to new situations	LO6	presentation techniques in performance and dealing with others inside organization			
A10	Acquire and apply new knowledge and practice self, lifelong and other	LO7	presentation techniques in performance and dealing with others and outside the organization			
	learning strategies.					

4. Course Teaching and Learning Methods:

Direct Instructio n	Indirect Instruction	Information Technology- Assisted Learning
---------------------------	----------------------	---

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
1		√				\checkmark	√							√	

Week	Scientific content of the course	Total		d number o		
No.	(Course Topics)	Weekly	Theoretical	Training		
	, , ,	Hours	teaching (lectures)	Tutorial	Practical Lab /	
1	Fundamental of definition concepts, characteristics and types of Communication.	3	1	2	0	
2	managerial and interpersonal communications	3	1	2	0	
3	concepts and requirement of good communications	3	1	2	0	
4	Communication model – Formal and informal communications	3	1	2	0	
5	Interpersonal and managerial communications	3	1	2	0	
6	how to use the interpersonal and managerial communication methods	3	1	2	0	
7	Revisio	n and M	id Exam			
8	Elements of effective presentation	3	1	2	0	
9	presentation techniques	3	1	2	0	
10	presentation techniques in performance and dealing with others inside organization	3	1	2	0	

11	presentation techniques in performance and dealing with others and outside the organization	3	1	2	0		
12	Interpersonal communications	3	1	2	0		
13	Body language skills	3	1	2	0		
14	Elements of effective presentation technique	3	1	2	0		
15,16	Final Exam.						

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10
2	Exam 2 written (Semester work)	11	10	10
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	presentation skills	9,10	10	10
6	Assignments	11	10	10

<u>6- Learning Resources and Supportive Facilities</u>*

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	HTI; Available Hard copy . Available Presentation (handed to students' part by part)
resources (books, scientific references, etc.) *	Other References	 Gary Johns and Alan M.Saks, Organization Behavior, Addison Wesley Longman, 2009. Scgermerhorn Jr., R. J., and Osborn, N. R., Organizational Behavior, John Wiley & Sons, Inc., New York, 10th Ed.,2008". Lustberg, Arch: How To Sell Yourself: Winning Techniques For Selling Yourself, Your Ideas, Your Message. Franklin Lakes: The Career Press, 2002

- Bovee, Courtland L, John V. Thill & Barbara E. Schatzman. Business Communication Today: Tenth Edition. New Jersey: Prentice Hall, 2010
- Hasson, Gill. Brilliant Communication Skills. Great Britain: Pearson Education, 2012.
- Ajmani, J. C. Good English: Getting it Right. New Delhi: Rupa Pubications, 2012.
- Bovee, Courtland L, John V. Thill & Barbara E. Schatzman. Business Communication Today: Tenth Edition. New Jersey: Prentice Hall, 2010.
- Lesikar, Raymond V and Marie E. Flatley. Basic Business Communication: Skills for Empowering the Internet Generation: Ninth Edition. New Delhi: Tata McGraw-Hill, 2002.
- -Henderson, Fiona, & Parkes, Geoff. (2023).
 "Improving Presentation Skills in Higher
 Education: A Case Study." Journal of Further
 and Higher Education, 47(2), 184-196
- -Graveline, Denise. (2023). "The Science of Effective Communication." Harvard Business Review, 101(3), 80-87.".
- Gallo, Carmine. (2022). Talk Like TED: The 9 Public-Speaking Secrets of the World's Top Minds. St. Martin's Griffin
- Henderson, Fiona, & Parkes, Geoff. (2022). "Improving Presentation Skills in Higher Education: A Case Study." Journal of Further and Higher Education, 45(4), 510-523.
- Graveline, Denise. (2022). "The Science of Effective Communication." Harvard Business Review, 99(5), 92-99.
- Lesikar, Raymond V and Marie E. Flatley. Basic Business Communication: Skills for Empowering the Internet Generation: Ninth Edition. New Delhi: Tata McGraw-Hill, 2022.
- Gary Johns and Alan M.Saks, Organization Behavior, Addison Wesley Longman, 2009
- Ajmani, J. C. Good English: Getting it Right. New Delhi: Rupa Pubications, 2012.
- Gallo, Carmine. (2022). Talk Like TED: The 9
 Public-Speaking Secrets of the World's Top
 Mind
- The Power of Saying No: The New Science of How to Say No That Puts You in Charge of Your Life" by Vanessa Patrick (2023)
- "Speaking with Strategic Impact: Reach, Connect, and Lead" by Kate Leavell (2023)

		• "The New Rules of Marketing and PR: How to Use Content Marketing, Podcasting, Social Media, AI, Live Video, and Newsjacking to Reach Buyers Directly" by David Meerman Scott (8th Edition, 2024)
	Electronic Sources (Links must be added)	https://cadreworks.org/resources/communication- skills
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Notebook and data show
facilities & equipment	Supplies	data show equipped lecture room
for teaching and learning *	Electronic Programs	Microsoft power point

	Course Coordinator	Program Coordinator
Name	DR.Ashraf selim	PROF. Ahmed Abd El-Gafar
Signature	AShraf Selim	(المسالمفار

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Strength of Materials			
Course Code (according to the bylaw):	ENG 146			
Department/s that participated in the teaching:	Me	chanical E	ngineerin	<u>a</u>
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	4			4
Course Type:	Compulsory			
The level to which the course was introduced:	JUNIOR			
Academic Program:	<u>Mechatron</u>	ics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Dr.Saleh S	obhy		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

Introduction, definitions, stress, strain, etc. Generalized Hooke's Law, torsion, bending, transverse loading, design of beams for strength, shearing force and bending moment diagram, yield and fracture criteria, elastic stress analysis.

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	Program Outcomes (ARS) rding to the matrix in the program specs)	Course Learning Outcomes			
	A1&A2&B1&B4	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
A1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals,	LO1	Explain the concepts and types of stress and strain under different loading conditions.		
	basic science and mathematics.	LO2	Identify statically determinate and unclassified problems		
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO3	Apply stress analysis techniques for solving mechanical design issues.		
B1	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations.	LO4	Explain methodologies for stress calculations.		
B4	Adopt suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and	LO5	Design beams, shafts, and other mechanical elements for strength requirements.		

maintain mechanical equipment and systems	

4. Course Teaching and Learning Methods:

Dir Instru	uctio	Indirect Instruction					Information Technology- Assisted Learning			-					
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	1	V			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			V					

Week	Scientific content of the course	Total	Expected	number of	the Learning	g Hours
No.	(Course Topics)	Weekly	Theoretical	Trai	ning	
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
1	Introduction, concept of stress, axial loading, normal stress	4	2	2	-	1
2	Shearing stress, bearing stress in connections.	4	2	2	-	-
3	Stress under general loading conditions.	4	2	2	-	-
4	Stress and strain – axial loading and normal strain	4	2	2	-	-
5	Hooke's law, deformation under axial loading.	4	2	2	-	-
6	Poisson's ratio, generalized Hooke's law, dilatation, Bulk modulus. Shearing strain	4	2	2	-	-

7	Revision and Mid Exam								
8	Torsion, stresses in shafts, deformation in circular shafts, angle of twist.	4	2	2	-	-			
9	Statically indeterminate shafts, design of transmission shafts	4	2	2	-	-			
10	Pure bending, prismatic members in pure bending	4	2	2	-	-			
11	Deformation in pure bending, stresses and deformation in elastic range.	4	2	2	-	-			
12	Transverse loading of prismatic members, distribution of normal stresses,	4	2	2	-	-			
13	Shearing stresses in a beam, shearing stresses in thin walled members.	4	2	2	-	-			
14	Design of beams for strength: shear and bending moment diagrams, relations among P,V & M	4	2	2	-	-			
15,16	Final Exam.								

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	3	10	10 %
2	Exam 2 written (Semester work)	6	10	10 %
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	9	0	20 %

6- Learning Resources and Supportive Facilities *

Learning resources (books, scientific references, etc.) *	The main (essential) reference (must be written in full according to the scientific documentation method)	F.PBeer and E.R. Johnston, Jr.: "Mechanics of materials "McGraw-Hill, 7th ed., 2018.
	Other References	

	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	non
facilities &	Supplies	non
equipment for	Electronic Programs	MS.TEAMS
teaching	Skill Labs/ Simulators	non
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr.Saleh Sobhy	Dr. Ahmed Abdalbadia
Signature	Saleh Sobhy	Serenthia

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Mechanical Vibration Analysis			ysis_
Course Code (according to the bylaw):	ENG 148			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>3</u>	<u>1</u>		<u>4</u>
Course Type:	Compulsory			
The level to which the course was introduced:	SENIOR 1			
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	DR HASSA	AN GASSO	<u>UR</u>	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Free and damped vibrations, harmonically excited motion, rotating and reciprocating unbalance, Free and forced vibration of single degree of freedom, Vibration of multi degree of freedom system, vibration of continuous systems (beams), Approximate methods, Vibration measurements.

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(accordi	Program Outcomes (ARS) ing to the matrix in the program specs)		Course Learning Outcomes
	A1,A2,B1,B2	Upon c	ompletion of the course, the student will be able to:
Code	Text	Code	Text
A1	Identify, formulate, and solve complex engineering problems by applying engineering Fundamentals, basic science, and mathematics.	LO1	Identify the different types of mechanical vibrations.
	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret	LO2	Explain the concept of natural frequency.
A2	data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO3	Express the constitutive equations relating the different elements of vibrating system.
	Model, Analyze and Design physical systems applicable to the	LO4	Describe complex vibration problems using equivalent system models.
	specific discipline by applying the concepts of: Thermodynamics, Heat Transfer,	LO5	Derive solutions of differential equations for vibration systems.
B1	Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations.	LO6	Analyze vibrating systems and determining their degrees of freedom.
	Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both	LO7	Evaluate the equations of motion using Newton's second law and the energy method.
B2	appropriate materials both traditional means and computer- aided tools and software contemporary to the mechanical engineering field	LO8	Predict the required initial conditions to solve the differential equation of motion.

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Indirect Instruction			Information Technology- Assisted Learning		-								
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V	V	V	V	V	V			V	V			V	

Week	Scientific content of the course	Total	Expected number of the Learning Hours			
No.	(Course Topics)	Weekly Hours	Theoretical	Trai	ining	
1,0,	• /	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
1	Revision to basic principles of dynamics	4	1	2	1	-
2	Basic concepts of mechanical vibrations	4	1	2	1	-
3	Modeling of SDOF systems	4	1	2	1	-
4	Free vibration of undamped SDOF systems	4	1	2	1	-
5	Free vibration of damped SDOF systems	4	1	2	1	-
6	Free vibration of damped SDOF systems (cont.)	4	1	2	1	-
7	Revision and Mid Exam					
8	Forced vibration of SDOF systems	4	1	2	1	-
9	Forced vibration of SDOF systems (cont.)	4	1	2	1	-

10	Modeling of 2DOF systems	4	1	2	1	-
11	Free vibration of 2DOF systems	4	1	2	1	-
12	Vibration of continuous systems	4	1	2	1	-
13	Vibration of continuous Systems (cont.)	4	1	2	1	-
14	Revision	4	1	2	1	-
15,16	Final Exam.					

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	2	8	8 %
2	Exam 2 written (Semester work)	4	8	8 %
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	Exam 3 written (Semester work or quiz)	6	8	8 %
6	Exam 4 written (Semester work or quiz)	9	8	8 %
7	Exam 5 written (Semester work or quiz)	12	8	8 %

6- Learning Resources and Supportive Facilities *

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	-Mechanical Vibrations Theory and Applications, S. Graham Kelly, Cengage Learning, 2011. -Singiresu s. Rao, "Mechanical Vibrations", 2018
(books, scientific references,	Other References	Mechanical Vibration - Theory and Applikation, S. Graham Kelly, Global Engineering: Christopher M. Shortt, 2012
etc.) *	Electronic Sources (Links must be added)	General ENG 148 Mec Vibration Microsoft Teams
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive facilities &	Devices/Instruments	Data show, PC, White board
equipment	Supplies	non
for	Electronic Programs	non
teaching	Skill Labs/ Simulators	non
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr Hassan Gassour	Dr. Ahmed Abdalbadia
Signature	griffer	Rusulling

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Principles of Thermodynamics			nics
Course Code (according to the bylaw):	MEC 117			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>3</u>	1		<u>4</u>
Course Type:		Compu	lsory	
The level to which the course was introduced:	SOPHOMORE			
Academic Program:	<u>Mechatror</u>	nics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Г	r. Ahmed	Shabban	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			ırtment
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Covers the fundamentals of thermodynamics; thermodynamic properties, processes, reversible and irreversible processes, and first and second law of thermodynamics. Properties of pure substances, and gas laws are considered. Carnot and Rankine cycle is studied. Function and performance of measuring instruments, calibration. Temperature and heat flux measurements, boiling and evaporation,

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes				
A1, A2, D1		Upon completion of the course, the student will be able to:				
Code	Text	Code	Text			
	Identify, formulate, and solve complex engineering problems	LO1	Identify the different flow processes in power generation industries by applying the principles of thermodynamics.			
A1	by applying engineering fundamentals, basic science and mathematics.	LO2	Differentiate between different types of energy that can be interchangeable in the system.			
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO3	Analyze and calculaing the rate of energy transfer using suitable correlations			
B1	Design, Model and analyze mechanical/electronics/digital physical systems by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material	LO3	Analyze and calculating different heating/cooling processes.			

4. Course Teaching and Learning Methods:

Direct Instruction	Indirect Instruction	Information Technology- Assisted Learning
-----------------------	----------------------	---

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
<mark>√</mark>	<mark>√</mark>	<mark>√</mark>	<mark>√</mark>		<mark>√</mark>	<mark>√</mark>	<mark>√</mark>				<mark>√</mark>				

Week	Scientific content of the course (Course Topics)	Total	Expected n	_		
No.		Weekly Hours	Theoretical	Traiı	other	
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	
1	Describes the properties used to specify the state, or condition, of a substance, the units in which the property is measured and the usual symbol, e.g.: — pressure — temperature — volume — energy Explains what is meant by: — absolute quantities — specific quantities — intensive values — extensive values	4	1	2	1	-
2	-Explains that a substance can exist in three states, or phases. -Describes the energy required to change phase of liquid or a gaseous form. -States that "internal" or "intrinsic" energy (U) is related to the motions of the molecules like molecular, vibrational motions, and is dependent only on	4	1	2	1	-

Page 3 of 7

	41					
	thermodynamic temperature.					
	- States that the total energy					
	stored in a body, or system, is termed enthalpy					
	1 0					
	(H) Defines total stored energy					
	the sum of internal energy and					
	flow energy [the product of pressure(P) and volume (V)],					
	i.e. $H = U + PV$.					
	-Defines potential and					
	kinetic energy.					
	- Defines an "ideal" gas					
	-States that an "ideal" gas					
	cannot be liquefied by					
	alteration of pressure alone					
	-States the laws of Boyle					
	and Charles and identifies					
	the following statements					
	with them: $P \times V = \alpha$					
	constant — Boyle $V/T = \alpha$					
	constant Charles					
	- Defines the specific					
	ideal gas equation as:					
	PV/T = R per unit mass of					
3	gas Explains that R will	4	1	2	1	
3	have a different	4	1	2	1	-
	numerical value for each					
	ideal gas or mixture of					
	Ideal gases.					
	- Applies simple numerical					
	calculations involving the					
	elements of the above					
	objectives.					
	- States that energy in					
	transition between bodies or					
	systems can only be heat					
	flow (or Heat transfer) (Q)					
	and work flow (or work					
	transfer) (W) - Defines the first law of					
	thermodynamics.					
	-Defines the following					
	conditions: — saturated					
	vapour — dry vapour — wet			2	1	
4	vapour — dryness fraction	4	1			-
	- superheated vapour					
	- Explains and uses the					

	"corresponding" relationship that exists between pressure and temperature for a saturated liquid or saturated vapour Demonstrates the above							
	objective, using tables of thermodynamic properties to determine different properties values defined in the above objective							
5	-Explains the calculations of work "work" by force × distance moved by - Sketches a P—V diagram relating the area of the diagram to the work done when a fluid exerts constant pressure on a piston in a cylinder. pressure at specific points in the process, in newtons/m2 V is the volume at the same points as for pressure, in m3 n is a	4	1	2	1	-		
6	-States that the following processes are applicable to ideal gases and vapors: — heat transfer: heating and cooling — work transfer; compression and expansion. elements in the above objectives Revision for part 1.	4	1	2	1	-		
7	Revision for part 1.	4	1	2	1	-		
8	Revision and Mid Exam							
9	Analysis of steady state flow open systems: turbines, pumps/compressors,	4	1	2	1	-		
10	Analysis of throttles, boilers, nozzles, diffusers, single Substance mixing chambers and heat exchangers.	4	1	2		-		

11	Irreversibility and definition of entropy. - Quantification of entropy. Forms of the second law: entropy statement and logical equivalence with Clausius and Kelvin Planck statements	4	1	2	1	-
12	 Definition of cycle efficiency and comparison with theoretical limit (Carnot). 	4	1	2	1	-
13	Revion part 2 and Quiz	4	1	2	1	-
14	Revion part 2 and Quiz	4	1	2	1	-
15,16	Final Exam.					

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	3	10	10%
2	Exam 2 written (Semester work or quiz)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	Assignments / Project /Portfolio/ Logbook	1-14	20	20%

6- Learning Resources and Supportive Facilities *

Learning resources (books, scientific	The main (essential) reference (must be written in full according to the scientific documentation method)	Lecture notes uploaded on class materials – Microsoft teams. Y.A. Cengel, "Thermodynamics- An Engineering Approach", McGraw-Hill, New York, 2007
references, etc.) *		R.K.RAJPUT, A TEXTBOOK OF ENGINEERING THERMODYNAMICS, 2008

Course Coordinator	Program Coordinator
--------------------	---------------------

Name	Dr. Ahmed Shabban	Dr. Mohamed Ashraf
Signature	D'-	Paraullies

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Technical Report Writing				
Course Code (according to the bylaw):	MNG 103				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	1	2		3	
Course Type:	Compulsory				
The level to which the course was introduced:	JUNIOR				
Academic Program:	Mechanical Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:		Dr. Mohai	med Elsaye	d	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Essential elements of a technical report: Abstract - Summary - Contents - Objectives - Details of the report including figures, images, video ...etc, - Conclusions - Recommendations - References using a standard format and the different electronic sources. Report Classification: Technical (Requirement specification, Analysis, Design, and Implementation). Administrative (Directed to different operational and management levels). Levels of confidentiality for the different reports. Report Composition: Logical presentation of the report and coordination between its components. Importance of using correct grammar and punctuation. Enhancing

communication effectiveness by the use of different media. Report Implementation: Use of the appropriate software packages including any graphics or multimedia packages.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS).

	Program Outcomes (NARS) ing to the matrix in the program specs)		Course Learning Outcomes
	(A5, A8, A10)	Upon	completion of the course, the student will be able to:
Code	Text	Code	Text
A5	Practice research techniques and methods of investigation as an	LO1	Identify the purpose, characteristics, and structure of technical writing, and distinguish it from general writing.
A5.	inherent part of learning.	LO2	Differentiate between the key components of technical reports, CVs, letters, and technical presentations.
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO3	Apply the principles of technical writing to produce structured technical documents such as reports, CVs, and presentations.
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	LO4	Analyze examples of technical documents through independent research to enhance communication skills and promote lifelong learning.

4. Course Teaching and Learning Methods:

Dire Instru			Inform Indirect Instruction Techno Assisted L						ology-						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
√	\checkmark		V			V	V			\checkmark				V	

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours			
No.	(Course Topics)	Weekly	Theoretical	Tra	ining	
	·	Hours	teaching (lectures)	Tutorial	Practical Lab /	
1	Introduction of technical writing	3	1	2	-	
2	Some Elements of Technical Reports (cover page, title page, abstract, acknowledgement, dedication and summary)	3	1	2	-	
3	Some Elements of Technical Reports (tables of contents, list of figures, list of tables, Nomenclature, Abbreviation and Acronym)	3	1	2	-	
4	Some Elements of Technical Reports (Introductory chapters(s), Literature Review, Central chapters,)	3	1	2	-	
5	Some Elements of Technical Reports (Microstructure, Conclusions, Tables and Figures, Appendices)	3	1	2	-	

6	Some Elements of Technical Reports (References (Harvard method))Bibliography, Plagiarism, Style)	3	1	2	-		
7	Punctuation, Layout and Equations.	3	1	2	-		
8	Revision and Mid Exam						
9	CV (Curriculum Vitae)	3	1	2	-		
10	Letters	3	1	2	-		
11	Technical Presentations	3	1	2	-		
12	Submitting a technical report from the students and evaluating the report according to the explanation	3	1	2	-		
13	Submitting a technical presentation from the students and evaluating the report according to the explanation	3	1	2	-		
14	Submitting a technical presentation from the students and evaluating the report according to the explanation	3	1	2	-		
15,16	Final Exam.						

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Technical Report (Semester work or quiz)	9	15	15%
2	Technical presentation (Semester work or quiz)	11, 12	15	15%
3	CV &letter	10	10	10%
4	Midterm Exam	8	20	20 %
5	Final Written Exam	15, 16	40	40 %

6- Learning Resources and Supportive Facilities *

Learning resources	The main (essential) reference	-The Oracle Corporation, "Corporate citizenship report 2023," Oracle, Redwood Shores, CA, USA, 2023.
(books, scientific	(must be written in full according to the scientific documentation method)	Accessed: Dec. 5, 2023. [Online]. Available: http://www.oracle.com/us/corporate/citizenship/corporate-citizenship-report-2563684

references, etc.) *		Research and Technical Writing for Science and - Engineering, by Meikang Qiu, Han Qiu, Yi Zeng, 2022.			
	Other References	M. Markel, Technical Communication, 11th ed. Boston, MA: Bedford/St. Martin's, 2017.			
	Electronic Sources (Links must be added)	Microsoft teams			
	Learning Platforms (Links must be added)	EKB - Microsoft office			
Supportive	Devices/Instruments	Data- show and laptop.			
facilities & equipment	Supplies	White board			
for	Electronic Programs	N/A			
teaching and learning *	Other (to be mentioned)	N/A			

	Course Coordinator	Program Coordinator
Name	Dr. Mohamed Elsayed	Dr. Mohamed Ashraf
Signature	محمد السيد	Cirls

المعهد التكنولوجي العالى _ مدينة العاشر من رمضان

قسم / العلوم الأساسية

توصيف مقرر

كود المقرر: HUM 102

إسم المقرر: تاريخ مصر الحديث

1- معلومات أساسية:

فرقة الدراسية / توى الدراسي الذي الفرقة/ المستوي الأول قدم فيه المقرر			المستوّى اا	إختيار ي			نوع المقرر		
	2		ات المعتمدة	عدد الساعات المعتمدة		2026/2025 أكتوبر عد		العام الأكاديمي الفصل الدراسي	
2	إجمالي	-	المعامل:	-	التمارين:	2	المحاضرة:	ساعات الإتصال:	
				لا يوجد				المتطلب السابق:	
			NARS 2	2018			المعايير الأكاديمية		
			201	6			تاريخ الموافقة على اللائحة		
أ.م.د.وليد رضوان							منسق المقرر		
2025-7-26							تاريخ اعتماد توصيف المقرر		
(محضر الاعتماد من مجلس القسم)							صيف المقرر	جهة مناقشة واعتماد تو	

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

يشمل المقرر: مصر تحت الحكم العثماني (1517 – 1798) (الفتح – الحكم والإدارة – الأوضاع الاقتصادية والاجتماعية) – الغزو الفرنسي لمصر وآثاره (1798 – 1801) (الاحتلال الحكم والإدارة – المقاومة الوطنية – فشل المشروع الاستعماري – نتائج الاحتلال) – نظام محمد علي (1805 – 1848) (الصراع السياسي وتولية محمد علي – بناء الدولة الحديثة – السياسة الخارجية -) – الحركة الوطنية والثورة العرابية (خلفاء محمد علي – عصر إسماعيل – الحركة الوطنية والثورة العرابية) – مصر في عهد الحماية البريطانية في عهد الاحتلال البريطانية (1882 - 1914) (سياسة الاحتلال – انبعاث الحركة الوطنية) – مصر في عهد الحماية البريطانية والحرب العالمية الأولي – تأليف الوفد وقيام ثورة 1919 – تصريح 28 فيراير 1922 – دستور 1923 – تطور القضية الوطنية ومعاهدة 1936 - مصر خلال الحرب العالمية الثانية) – أزمات مصر السياسية والاجتماعية والطريق إلي ثورة يوليو – الثورة وتغير النظام السياسي – الجلاء البريطاني 1954 – العدوان الثلاثي 1956.

3- نواتج التعلم للمقرر:

اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر	مخرجات البرنامج / المعايير الأكاديمية المتبناة (التي يحققها المقرر تبعا للمصفوفة في توصيف البرنامج)			
د الانتهاء من المقرر سيكون الطالب قادرا على	ie	(A2- A3- A9)		
النص	الكود	النص	الكود	
استقراء أهداف القوى الاستعمارية وأن الوطن مستهدف.	LO 1	تطوير وإجراء التجارب المعملية المناسبة		
إدراك أن التاريخ هو المعلم الأول للحكمة و لا بد من دراسته.	LO 2	أوالمحاكاة، وتحليل وتفسير وتقييم النتائج، واستخدام التحليلات الإحصائية والحكم الهندسي	A 2	
معرفة إيجابيات وسلبيات التجارب التي مرت بها مصر.	LO 3	الموضوعي لاستخلاص النتائج		
تعريف دور الشعب في الكفاح الوطني، والإشادة				
بالحركة الوطنية ودورها في التصدي للاستعمار وظلم الحكام.	LO 4	تطوير وإجراء التجارب المعملية المناسبة أوالمحاكاة، وتحليل وتفسير وتقييم النتائج،	A 3	
التمييز بين الحكام الإيجابيين والسلبيين وتقييم دور كل منهم.	LO 5	واستخدام التحليلات الإحصائية والحكم الهندسي الموضوعي لاستخلاص النتائج.	AJ	
الاستفادة مما اكتسبه من مهارات في حياته العملية.	LO 6			
الموضوعية في الحكم علي الأحداث في ضوء الظروف التي أحاطت بها.	LO 7	استخدام التفكير الإبداعي والمبتكر والمرن		
القدّرة علي التحليل والاستنتاج.	LO 8	واكتساب مهارات ريادة الأعمال والقيادة وتوقع	A 9	
القدرة علي التوقع وتوظيف مهاراته في الحياة العملية.	LO 9	المواقف الجديدة والاستجابة لها.	A	
توخي السلوك الطيب والاقتداء بالقدوة الحسنة.	LO10			

4 طرق التعليم والتعلم للمقرر:

<u>ِس</u> ثىر	التدري المبا		التدريس الغير مباشر										علم بمس لمعلوما		استراتي تكنو
المحاضرات	التمارين العملية والتجارب	العصف الذهنى	التعلم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير /الأبحاث	الحوار والمناقشة	التدريب الميداني	الزيارات الميدانية	التحلم الذاتى	التعلم بالإكتشاف	برامج المحاكاة أو النمذجة	المعامل الإفتراضية	التطم الإلكترونى	الذكاء الإصطناعي في التطيع
√											$\sqrt{}$				$\sqrt{}$

	عدد ساعات التعلم المتوقعة			إجمالي عدد	المحتوى العلمى للمقرر	:		
نواتج التعلم	يب	تدري	تدریس	الساعات	(موضوعات المقرر)	رقم الاسبوع الدراسي		
التي يحققها المقرر	عملي	تمارين	نظري	الأسبوعية		الدراسي		
LO 1	0	0	2	2	أهمية دراسة التاريخ وخطة الدراسة.	1		
LO 2	0	0	2	2	الاحتلال العثماني ومساوئه.	2		
LO 3	0	0	2	2	الغزو الفرنسي وتصدي الشعب له.	3		
LO4	0	0	2	2	دور محمد علي في بناء الدولة الحديثة.	4		
LO 4	0	0	2	2	خلفاء محمد علي وإبراز دور الخديو اسماعيل	5		
LO 5	0	0	2	2	احتلال بريطانيا لمصر وسياستها الاستعمارية	6		
	•	الدراسي	ف الفصل	امتحان منتص	مراجعة و	7		
LO 6	0	0	2	2	دور الحركة الوطنية في التصدي للاحتلال. (1)	8		
LO 6	0	0	2	2	دور الحركة الوطنية في التصدي للاحتلال. (2)	9		
LO 7	0	0	2	2	المظاهرات والثورات المناهضة للاحتلال وخاصة ثورة 1919 ونتائجها.	10		
LO 8	0	0	2	2	نذر الحرب العالمية الثانية ومعاهدة 1936 والعدوان الثلاثي.	11		
LO 9	0	0	2	2	الأحداث التي مهدت لثورة 23 يوليو 1952.	12		
LO 10	0	0	2	2	تحليل أهداف ثورة 23 يوليو 1952.	13		
LO 1	0	0	2	2	مراجعة عامة	14		
اختبارات الفصل الدراسي النهائية								

5- طرق تقييم الطلاب:

النسبة المئوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	۴
%10	10	5	امتحان 1 تحريري (أعمال سنة)	1
%10	10	9	امتحان 2 تحريري (أعمال سنة)	2
% 20	20	7	امتحان منتصف الفصل الدراسي	3
% 40	40	14	امتحان نهائي تحريري	4
		لا يوجد	امتحان نهائي عملي	5
%10	10	11	امتحان نهائي شفهي	6
%10	10	8	تكليفات / مشروع / ملف الإنجاز /كتيب الانشطة	7
		لا يوجد	تدريب ميداني	8
		لا يوجد	أخرى (تذكر)	9

6- مصادر التعلم والتسهيلات المادية:

خالد الشربيني ، مرفت ذكي: تاريخ مصر الحديث، مذكرة للمعهد التكنولوجي	المرجع الأساسي للمقرر	
العالي بالعاشر من رمضان		
 1- إسماعيل مرسي: تاريخ مصر الحديث من الحملة الفرنسية حتى 		
خلع فاروق، دار الكتب المصرية، 2020		
2- جاد طه: معالم تاريخ مصر الحديث والمعاصر، دار الفكر العربي،		
.1985		
3- محمد عبد الرحيم مصطفى: تاريخ مصر الحديث. المطبعة	* \$51 - 1 *11	
الأميرية 2019	المراجع الأخرى	مصادر التعلم
4- محمد سهيل طقوش: تاريخ مصر الحديث والمعاصر، دار		(الكتب والمراجع
النفانس، 2019.		. ,
5- محمد صبري: تاريخ مصر الحديث من محمد علي إلى اليوم، دار		العلمية وغيرها)
الكتب المصرية، 2008		*
1- https://ar.wikipedia.org/wiki		
	المصادر الإلكترونية	
2- http://www.du.edu.eg/	المعصدر الالمصور (المعصور) (لابد من إضافة الروابط)	
3- https://www.youtube.com/	(دبد من إعداقه الروابط)	
3- https://www.youtube.com/		
https://www.alsh.ag/an/hama	المنصة التعليمية	
https://www.ekb.eg/ar/home	(لابد من إضافة الرابط)	
(داتا شو) وجهاز كمبيوتر محمول.	الأجهزة	
قاعة محاضرات مجهزة	المستلزمات	التجهيزات
	البرامج الالكترونية	التعليمية
	معامل المهارات/ المحاكيات	المساندة للتعليم
	المعامل الافتراضية	والتعلم *
	أخرى (تذكر)	

منسق البرنامج	منسق المقرر	
أ.د.أحمد عبد الغفار	أ.م.د.وليد رضوان	الإسم
Jean (Stanton	ولسرجنوام	التوقيع

المعهد التكنولوجي العالى _ مدينة العاشر من رمضان

قسم / العلوم الأساسية

توصيف مقرر

كود المقرر: HUM 103

إسم المقرر: الحضارة العربية والإسلامية

قسم العلوم الأساسية	القسم القائم بتدريس المقرر
---------------------	----------------------------

1- معلومات أساسية:

ي الفرقة/ المستوي الأول			الفرقة الدراسية / المستوى الدراسي الذي يقدم فيه المقرر		إختياري			نوع المقرر	
	2		عدد الساعات المعتمدة				العام الأكاديمي الفصل الدراسي		
2	إجمالي	-	المعامل:	-	التمارين:	2	المحاضرة:	ساعات الإتصال:	
				لا يوجد				المتطلب السابق:	
			NARS 2	2018			المعايير الأكاديمية		
			201	6			تاريخ الموافقة على اللائحة		
أ.م.د.وليد رضوان							منسق المقرر		
2025-7-26							تاريخ اعتماد توصيف المقرر		
	(محضر الاعتماد من مجلس القسم)						صيف المقرر	جهة مناقشة واعتماد توا	

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

يشمل المقرر: أسس الحضارة الإسلامية (القرآن والسنة - الأمة العربية - اللغة - الإطار الجغرافي - الشعوب المفتوحة - التأثيرات الأجنبية) - النظام السياسي (الخلافة - الوزارة - الكتابة - الحجابة) - النظام الإداري (الإدارات المحلية - دواوين الجند والخراج والرسائل والبريد.....إلخ) - النظام المالي (موارد بيت المال - النققات - السكة) - النظم العسكرية (الجيش: تكوينه وأسلحته وأساليبه - الأسطول) - التعليم والثقافة (العلوم الشرعية "علم الكلام والفقه...." - العلوم العقلية) - الفنون والأثار والعمارة - القضاء والتقاضي - المجتمع الإسلامي (عناصره وأجناسه - الطوائف الدينية والمذهبية - البناء الطبقي: الحكام والفقهاء والعلماء والتجار وأصحاب الحرف والصناعات...إلخ.

3- <u>نواتج التعلم للمقرر:</u> اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر	فرجات البرنامج / المعايير الأكاديمية المتبناة حققها المقرر تبعا للمصفوفة في توصيف البرنامج)				
الانتهاء من المقرر سيكون الطالب قادرا على أن	(A2- A3- A7)				
ائنص	الكود	النص	الكود		
يستنتج مدى التأثير والتأثر بالأحداث التى مرت بها الحضارة العربية والإسلامية و معرفة مصادر تلك الحقبة الهامة.	LO 1	تطوير وإجراء التجارب المعملية المناسبة			
يربط بين التأثير و التأثر بأحداث الحضارة العربية والإسلامية و بين إنجازات و إخفاقات كل حقبة.	LO 2	تطوير وإجراء التجارب المعملية المناللية أو المحاكاة، وتحليل وتفسير وتقييم النتائج، واستخدام التحليلات الإحصائية والحكم الهندسي	A 2		
يربط بين التأثير و التأثر بأحداث الحضارة العربية والإسلامية وبين إنجازات و إخفاقات كل حقبة.	LO 3	واستعدام العنيرت الإعتمالية والعدم الهداسي الموضوعي لاستخلاص النتائج			
يستخدم المنهج التاريخي لتناول الأحداث الهامة في الحضارة العربية والإسلامية و مصادر تلك الفترة.	LO 4				
يشرح المعلومات والأحداث التي تتعلق بالحضارة العربية والإسلامية	LO 5	تطبيق عمليات التصميم الهندسي لإنتاج حلول فعالة من حيث التكلفة، تلبي الاحتياجات النوعية	A 3		
يتعرف على أهم المؤثرات التي ساهمت في تكوين الحضارة العربية والإسلامية .	LO 6	مع مراعاة الجوانب العالمية والثقافية والاجتماعية والاقتصادية والإخلاقية			
يلخص مصادر ومكانة الحضارة العربية والإسلامية.	LO 7	وغيرها من الجوانب المتسقة مع النظام والظروف، وضمن مبادئ وسياق التصميم والتنمية المستدامين.			
تعزيز العديد من السلوكيات والمهارات داخل وخارج نطاق العمل بحيث يعمل ضمن فريق .	LO 8				
يظهر مهارات إدارة الوقت بكفاءة في مجال أى مهنة ترتبط بالحضارة العربية والإسلامية .	LO 9	العمل بكفاءة كفرد وعضو في فرق متعددة التخصصات ومتعددة الثقافات.	A 7		
يستخدم تكنولوجيا المعلومات بما يخدم الممارسة المهنية في مجال الحضارة العربية والإسلامية	LO10				

4 طرق التعليم والتعلم للمقرر:

یس اشر												استراتيجيات التعلم بمساعدة تكنولوجيا المعلومات			
المحاضرات	التمارين العملية والتجارب	العصف الذهنى	التعلم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير /الأبحاث	الحوار والمناقشة	التدريب الميداني	الزيارات الميدائية	التحلم الذاتى	التعلم بالإكتشاف	برامج المحاكاة أو النمذجة	المعامل الافتراضية	التطم الالكترونى	الذكاء الإصطناعي في التطيم
		1		√	√	√	√			$\sqrt{}$	$\sqrt{}$			√	

الجدول الدراسى للمقرر:

	لمتوقعة	عات التعلم ا	عدد ساء	110 11 11	المحتوى العلمي للمقرر	
نواتج التعلم	یب	تدر	تدریس	إجمالي عدد الساعات	، ـــــــوى ، ـــــــي (موضوعات المقرر)	ر <u>قم</u> الاسبوع
التي يحققها المقرر	عملی	تمارين	نظري	الأسبوعية	(, , , , , , , , , , , , , , , , , ,	الدراسي
LO 1	0	0	2	2	تعريف بالمقرر الدراسي ومقدمة عامه	1
LO 2	0	0	2	2	أسس الحضارة الإسلامية : (القرآن والسنة – الأمة العربية - اللغة – الإطار الجغرافي - الشعوب المفتوحة – التأثيرات الأجنبية).	2
LO 3	0	0	2	2	النظام السياسى : (الخلافة - الوزارة - الكتابة – الحجابة).	3
LO4	0	0	2	2	النظام الإدارى: (الإدارات المحلية – دواوين الجند والخراج والرسائل والبريد إلخ).	4
LO 4	0	0	2	2	النظام المالى : (موارد بيت المال – النفقات – السكة)	5
LO 5	0	0	2	2	النظم العسكرية : (الجيش والأسطول : تكوينه وأسلحته وأساليبه)	6
		الدراسي	ف الفصل	امتحان منتص	مراجعة و	7
LO 6	0	0	2	2	التعليم و الثقافة : (العلوم الشرعية ''علم الكلام والفقه'' – العلوم العقلية)	8
LO 6	0	0	2	2	الفنون والآثار والعمارة.	9
LO 7	0	0	2	2	القضاء والتقاضي .	10
LO 8	0	0	2	2	المجتمع الإسلامي : (عناصره و أجناسه ــ الطوائف الدينية والمذهبية)	11
LO 9	0	0	2	2	المجتمع الإسلامى، البناء الطبقى : الحكام والفقهاء والعلماء)	12
LO 10	0	0	2	2	التجار و أصحاب الحرف والصناعاتإلخ	13
LO 1	0	0	2	2	مراجعة عامة	14
		هائية	راسي الذ	ات القصل الد	اختبار	16-15

5_ طرق تقييم الطلاب:

النسبة المئوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	۴
%10	10	5	امتحان 1 تحريري (أعمال سنة)	1
%10	10	9	امتحان 2 تحريري (أعمال سنة)	2
% 20	20	7	امتحان منتصف الفصل الدراسي	3
% 40	40	14	امتحان نهائي تحريري	4
		لا يوجد	امتحان نهائي عملي	5
%10	10	11	امتحان نهائي شفهي	6

%10	10	8	تكليفات / مشروع / ملف الإنجاز /كتيب الانشطة	7
		لا يوجد	تدريب ميداني	8
		لا يوجد	أخرى (تذكر)	9

6- مصادر التعلم والتسهيلات المادية:

خالد الشربيني ، مرفت ذكي: تاريخ مصر الحديث، مذكرة للمعهد التكنولوجي العالي بالعاشر من رمضان	المرجع الأساسي للمقرر	
1- أحمد عبد الرازق، الحضارة الإسلامية في العصور الوسطى، القاهرة، 2004 .		
 2- غيداء عادل: دراسات في الحضارة العربية الإسلامية، المؤسسة العربية للدراسات واننشر، 2020. 	• \$ 1	
 3- سعيد عبد الفتاح عاشور وآخران: دراسات في تاريخ الحضار الإسلامية، دار المعرفة الجامعية، 2018. 	المراجع الأخرى	مصادر التعلم
4- شوقي أبو خليل: الحضارة العربية الاسلامية وموجز عن الحضارات السابقة، دار الفكر المعاصر، 2010		(الكتب والمراجع العلمية وغيرها)
1- https://ar.wikipedia.org/wiki		*
2- http://www.du.edu.eg/	المصادر الالكترونية (لابد من إضافة الروابط)	
3- https://www.youtube.com/	2	-
https://www.ekb.eg/ar/home	المنصة التعليمية (لابد من إضافة الرابط)	
(داتا شو) وجهاز كمبيوتر محمول.	الأجهزة	
قاعة محاضرات مجهزة	المستلزمات	التجهيزات
	البرامج الالكترونية	التعليمية
	معامل المهارات/ المحاكيات	المساندة للتعليم
	المعامل الافتراضية	والتعلم *
	أخرى (تذكر)	

منسق البرنامج	منسق المقرر	
أ.د.أحمد عبد الغفار	أ.م.د.وليد رضوان	الإسم
- Liether)	وليدرجنوام	التوقيع

المعهد التكنولوجي العالى _ مدينة العاشر من رمضان

قسم / العلوم الأساسية

توصيف مقرر

كود المقرر: HUM 104

اسم المقرر: التذوق الأدبى

العلوم الأساسية	القسم القائم بتدريس المقرر
-----------------	----------------------------

1- معلومات أساسية :

ي	ثانية/المستوع	الفرقة ال	دراسية / دراسي الذي 4 المقرر	المستوى ال		إختياري	نوع المقرر			
2			ات المعتمدة	عدد الساء	أكتوبر	20	26/2025	العام الأكاديمي الفصل الدراسي		
2	إجمالي	0	المعامل:	0	2 التمارين:		المحاضرة:	ساعات الاتصال: 1		
						المتطلب السابق:				
			NARS 2	2018			المعايير الأكاديمية			
			201	6			تاريخ الموافقة على اللائحة			
						منسق المقرر				
			26/7/2		تاريخ اعتماد توصيف المقرر					
		قسم)	. من مجلس الن	حضر الاعتماه	(م		جهة مناقشة واعتماد توصيف المقرر			

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

مفهوم النص الإبداعي وأشكال التعبير الوجداني - الأنواع الأدبية الشعرية والنثرية والمسرحية والقصصية - نظريات التاقي وتعدد قراءات الدارس للنص علي مستويات الفهم والتذوق والتحليل - أسس التشكيل الجمالي للنص من خلال تحليل: الماهية، الأدوات، الوظائف - أهمية التاريخ للنص والتجربة الأدبية من حيث علاقتها بالمبدع والمرحلة والمجتمع والبيئة - أركان النص الأدبي ومقوماته والنظريات النقدية حول أسس تحليله وتفسيره وتقويمه ونقده - النقد النظري والتطبيقي والنقد التأثري الانطباعي والنقد الموضوعي للنص قديماً وحديثاً - تطبيق إحدي نظريات التلقي واستكشاف أعماق النص علي أساس الوعي بالتحليل الجماعي الممفردات والأصوات والتراكيب والجمل وفضاءات تجارب الشعراء - دراسة آليات التذوق الأدبي وأسس تكوينه من خلال تعدد القراءات للظواهر النقدية والإبداعية - الدرس التطبيقي علي نصوص منتقاه من الشعر العربي القديم والمعاصر بما يعكس صوراً من ظاهرة الإبداع وظاهرة التلقي ومابينهما من علاقات (يمكن دراسة ظاهرة فن المعارضات الشعرية).

3- نواتج التعلم للمقرر:

اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر	مخرجات البرنامج / المعايير الأكاديمية المتبناة (التي يحققها المقرر تبعا للمصفوفة في توصيف البرنامج)			
عند الانتهاء من المقرر سيكون الطالب قادرا على	A7,A10			
النص	الكود	النص	الكود	
إدراك مفهوم النص الإبداعي و أشكال التعبير الوجداني	LO1			
معرفة الأنواع الأدبية الشعرية والنثرية والمسرحية والقصصيه	LO2			
الإلمام بأسس التشكيل الجمالي للنص من خلال تحليل النصوص النثرية	LO3	العمل بكفاءة كفرد وعضو في فرق متعددة التخصصات ومتعدد الثقافات وذات صله	A7	
دراسة آليات التذوق الأدبي و تطبيقها على بعض النصوص الشعرية أو النثرية الحديثة.	LO4	بالتذوق الأدبي		
الدرس التطبيقي علي نصوص منتقاه من الشعر العربي القديم والمعاصر	LO5			
تطبيق إحدي نظريات التلقي و إستكشاف أعماق النص علي أساس الوعي بالتحليل الجماعي للمفردات.	LO6			
تحليل أسس النصوص التأثيرية و التطبيقية من خلال تعدد القراءات للظواهر النقدية و الإبداعية.	LO7	اكتساب المعارف الجديدة وتطبيقها، وممارسة		
تعزيز العديد من السلوكيات والمهارات داخل وخارج نطاق العمل بحيث يعمل ضمن فريق.	LO8	استراتيجيات التعلم الذاتي وغير ها مدى الحياة.	A10	
إكتساب مهارات إدارة الوقت بكفاءة.	LO9	·		
إستخدام تكنولوجيا المعلومات ومواقع الإنترنت لإكتساب مهارات التعليم الذاتي.	LO10			

4 طرق التعليم والتعلم للمقرر:

يس شر	التدر المبا	يجيات التعلم بمساعدة التدريس الغير مباشر ولوجيا المعلومات													
المحاضرات	التمارين العملية والتجارب	العصف الذهنى	التطم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير /الأبحاث	الحوار والمناقشة	التدريب الميدائي	الزيارات الميدانية	التعلم الذاتى	التطم بالإكتشاف	برامج المحاكاة أو النمذجة	المعامل الافتراضية	التعلم الالكترونى	الذكاء الإصطناعي في التعليم
		V				√	√			1				1	

الجدول الدراسى للمقرر:

	لمتوقعة	عات التعلم ا	عدد ساء		المحتوى العلمي للمقرر	
نواتج التعلم	يب	تدر	تدریس	إجمالي عدد الساعات	المعتوى المقي عمور (موضوعات المقرر)	ر <u>قم</u> الاسبوع
التي يحققها المقرر	عملی	تمارين	نظري	الأسبوعية	, ,	الدراسي
LO 1	0	0	2	2	مقدمة عامة و معرفة مفهوم التذوق الأدبي	1
LO 1	0	0	2	2	مفهون النص الإبداعي و أشكال التعبير الوجداني	2
LO 1,2	0	0	2	2	الأنواع الأدبية الشعرية والنثرية و المسرحية و القصصية.	3
LO 2	0	0	2	2	نظريات التلقي و تعدد قراءات الدرس للنص علي مستويات الفهم والتذوق والتحليل .	4
LO 5,6	0	0	2	2	أسس التشكيل الجمالي للنص من خلال تحليل: الماهية – الأدوات – الوظائف – أهمية التاريخ للنص والتجربة الأدبية من حيث علاقتها بين المبدع والمرحلة والمجتمع و البيئة.	5
LO 4,8	0	0	2	2	أركان النص الأدبي و مقوماته و النظريات النقدية حول أسس تحليله وتفسيرة و تقويمه ونقده.	6
		، الدراسي	ف الفصل	امتحان منتص	مراجعة و	7
LO 2,3	0	0	2	2	النقد النظري و التطبيقي و النقد التأثيري الإنطباعي و النقد الموضوعي للنص قديما و حديثًا.	8
LO 2	0	0	2	2	تطبيق إحدي نظريات التلقي و إستكشاف أعماق النص علي أساس الوعي بالتحليل الجماعي للمفردات و الأصوات والتراكيب و الجمل.	9
LO 2,6	0	0	2	2	دراسة آليات التذوق الأدبي و أسس تكوينه من خلال تعدد القراءات بالظةاهر النقدية و الإبداعية.	10
LO 3,7,10	0	0	2	2	الدرس التطبيقي علي نصوص منتقاه من الشعر العربي القديم والمعاصر.	11
LO 4, 8	0	0	2	2	دراسة ظاهارة فن المعارضات الشعرية	12
LO 4, 8	0	0	2	2	مراجعة عامة	13
		هائية	راسي الذ	ات القصل الد	إختبار	14

طرق تقييم الطلاب

النسبة المئوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	م
% 10	10	5	امتحان 1 تحريري (أعمال سنة)	1
% 10	10	12	امتحان 2 تحريري (أعمال سنة)	2
% 20	20	7	امتحان منتصف الفصل الدراسي	3
% 40	40	14	امتحان نهائي تحريري	4
% 20	20	طوال الفصل	تكليفات / تقارير	5

5- مصادر التعلم والتسهيلات المادية:

كتاب المقرر ويتم تسليمه للطلاب في بداية الفصل	المرجع الأساسي للمقرر (لابد من كتابة البيانات كاملة وفقا لطريقة توثيق علمي)		
عبد الله التطاوي، تقاطعات الحركة الشرعية بين الموروث والفردي، الدار المصرية اللبنانية بالقاهرة، الطبعة الثانية.2020	المراجع الأخرى	مصادر التعلم (الكتب والمراجع	
<pre>https://ar.wikipedia.org/wiki</pre>	المصادر الالكترونية (لابد من إضافة الروابط)	العلمية وغيرها)	
EKB - Microsoft office	المنصة التعليمية (لابد من إضافة الرابط)		
	الأجهزة		
Data show, White board	المستلزمات	التجهيزات	
Microsoft Teams	البرامج الالكترونية	التعليمية	
	معامل المهارات/ المحاكيات	المساندة للتعليم	
	المعامل الافتراضية	والتعلم *	
	أخرى (تذكر)		

منسق البرنامج	منسق المقرر	
أ.د. أحمد عبدالغفار		الإسم
(كالمسالخفار		التوقيع

المعهد التكنولوجي العالي _ مدينة العاشر من رمضان

قسم / العلوم الأساسية

توصيف مقرر

كود المقرر: HUM 105

اسم المقرر: التذوق الموسيقى

العلوم الأساسية	القسم القائم بتدريس المقرر
-----------------	----------------------------

1- معلومات أساسية:

ي	ثانية/المستوع	الفرقة ال	دراسية / دراسي الذي 4 المقرر	المستوى ال	إختيار ي			نوع المقرر
	2		عدد الساعات المعتمدة		أكتوبر	20	26/2025	العام الأكاديمي الفصل الدراسي
2	إجمالي	0	المعامل:	0	التمارين:	2	المحاضرة:	ساعات الاتصال: 1
لا يوجد								المتطلب السابق:
			NARS 2	2018			مية	المعايير الأكادي
2016							, اللائحة	تاريخ الموافقة على
							•	منسق المقرر
26/7/2025						المقرر	تاريخ اعتماد توصيف	
(محضر الاعتماد من مجلس القسم)							صيف المقرر	جهة مناقشة واعتماد توا

2- الوصف العام للمقرر (ملخص موجز للمحتوى العلمي):

الاستماع لمجموعات الآلات الموسيقية الوركسترالية وهي مجموعة الآلات الوترية – مجموعة ألات النفخ الخشبي – مجموعة ألات النفخ النحاسي – الآلات الإيقاعية، والتعرف عليها من خلال الصور المرفقة مع الملزمة الخاصة بالمقرر الدراسي – الدراسة النظرية بطريقة مختصرة تشمل جوانب المعرفة الأساسية المطلوب دراستها للعصور الموسيقية المختلفة (عصر الباروك – العصر الكلاسيكي- العصر الرومانتيكي – نبذة عن موسيقي الجاز ونشأتها – نبذة عن الموسيقي العربية وألاتها المستخدمة على الآلات الموسيقية المستخدمة في العربية وألاتها المستخدمة) – الأهداف العامة للمقرر: بعد دراسة هذا المقرر يكون الطالب قادراً علي: التعرف بالاستماع علي الآلات الموسيقية المختلفة – المهارات الاوركسترا – دراسة أنواع المعلومات الهامة عن موسيقي المجتلفة – الموسيقية المختلفة – تمييز أنواع المؤلفات الموسيقية المختلفة (عالمية الذهنية: بعد دراسة هذا المقرر يكون الطالب قادراً علي: التواصل بفاعلية من عربية) – معرفة تكوين الاوركسترا الغربي والشرقي وفرق الجاز – المهالاات العامة: بعد دراسة هذا المقرر يكون الطالب قادراً علي: التواصل بفاعلية من خلال المناقشة والحوار – توظيف المادة العلمية في خدمة الثقافة الموسيقية – الإلمام بثقافات علمية في غير مجال التخصص – الأساليب المستخدمة للتقويم: مناقشات وشرح المحاضرة – اختبارات شفوية وتحريرية – اختبار نهاية الفصل الدراسي)

3- نواتج التعلم للمقرر:

اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر	مخرجات البرنامج / المعايير الأكاديمية المتبناة (التي يحققها المقرر تبعا للمصفوفة في توصيف البرنامج)		
عند الانتهاء من المقرر سيكون الطالب قادرا على	A3,A4, A5, A6,A10		
النص	الكود	النص	الكود
معرفة مجموعة الآلات الوترية	LO1	تطبيق عمليات التصميم الهندسي إلنتاج حلول	
التعرف علي أصوات مجموعات الآت النفخ الخشبي ومجموعات الآت النفخ النحاسي والتعرف علي الآلات الموسيقية من خلال الصور	LO2	فعالة من حيث التكلفة تلبي االحتياجات النوعية مع مراعاة الجوانب العالمية والثقافية واالاجتماعية واالاجتماعية واالقتصادية والبيئية واألخالقية وغيرها من الجوانب المتسقة مع النظام والظروف وضمن مبادئ وسياق التصميم والتنمية التطوير المستدامين.	A3
معرفة تكوين الأوركسترا الغربي و الشرقي وفرق الجاز	LO3		
إدراك ومعرفة أنواع الآلات الموسيقيه المختلفة	LO4	الاستفادة من التقنيات المعاصرة، والممارسات	
تمييز أنواع المؤلفات الموسيقية المختلفة (عالمية- عربية)	LO5	والمعايير، وإرشادات الجودة، ومتطلبات الصحة والسلامة والقضايا البيئية ومبادئ إدارة	A4
التواصل بفاعلية من خلال المناقشة والحوار	LO6	المخاطر.	
توظيف المادة العلمية في خدمة الثقافة الموسيقية	LO7		
تعزيز العديد من السلوكيات و المهارات داخل وخارق نطاق العمل بحيث يعمل ضمن فريق	LO8	ممارسة تقنيات البحث وأساليب التحقيق كجزء لايتجزأ من التعلم.	A5
الإلمام بثقافات علمية في غير مجال التخصص و إكتساب مهارات إدارة الوقت بكفاءة	LO9	التخطيط والإشراف والرقابة علي تنفيذ المشاريع الهندسية مع مراعاة متطلبات الحرف الأخري	A6
إستخدام تكنولوجيا المعلومات ومواقع الإنترنت لإكتساب مهارات التعلم الذاتي	LO10	اكتساب المعارف الجديدة وتطبيقها، وممارسة استراتيجيات التعلم الذاتي وغيرها مدى الحياة.	A10

4 طرق التعليم والتعلم للمقرر:

بس ئىر	التدري المباه		التدريس الغير مباشر								ساعدة ت	علم بمس لمعلوما	جيات الذ لوجيا ا	استراتي	
المحاضرات	التمارين العملية والتجارب	العصف الذهنى	التعلم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير الأبحاث	الحوار والمناقشة	ائتدريب الميداني	الزيارات الميدائية	التعلم الذاتى	التطم بالإكتشاف	برامج المحاكاة أو التمذجة	المعامل الافتراضية	التعلم الالكتروني	الذكاء الإصطناعي في التعليم
V		1				1	1			1				1	

الجدول الدراسي للمقرر:

	لمتوقعة	عات التعلم ا	عدد ساء	إجمالي عدد	المحتوى العلمي للمقرر	
نواتج التعلم	يب	تدر	الساعات تدريس		(موضوعات المقرر)	ر <u>قم</u> الاسبوع الدرا
التي يحققها المقرر	عملی	تمارين	نظري	الأسبوعية		الدراسي
LO 1	0	0	2	2	مقدمة عامة و معرفة مفهوم التذوق الموسيقي	1
LO 2	0	0	2	2	الموسيقي كإبداع إنساني	2
LO 1,2	0	0	2	2	أنواع الموسيقي الشرقية والعربية	3
LO 4	0	0	2	2	أنواع الآلات الوترية و تمايز نغماتها	4
LO 5,6	0	0	2	2	أنواع آلات النفخ الخشبي والنحاسي	5
LO 4,8	0	0	2	2	التعرف علي الآلات الموسيقية المختلفة من خلال الصور	6
مراجعة وامتحان منتصف الفصل الدراسي					7	
LO 2,3	0	0	2	2	كيفية تكوين الأوركسترا الغربي و الشرقي	8
LO 6	0	0	2	2	موسيقي الجاز و نشأتها وآلاتها	9
LO 2,6	0	0	2	2	المقارنة بين أنواع المؤلفات الموسيقية المختلفة (عالمية و عربية)	10
LO 3,7,10	0	0	2	2	دراسة العصور الموسيقية المختلفة(غصر الباروك- العصر الكلاسيكي- العصر الرومانتيكي)	11
LO 6, 8	0	0	2	2	توظيف المادة العلمية في خدمة الثقافة الموسيقية	12
LO 4, 8	0	0	2	2	مراجعة عامه	13
إختبارات الفصل الدراسي النهائية					14	

طرق تقييم الطلاب

النسبة المئوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	۴
% 10	10	5	امتحان 1 تحريري (أعمال سنة)	1
% 10	10	12	امتحان 2 تحريري (أعمال سنة)	2
% 20	20	7	امتحان منتصف الفصل الدراسي	3
% 40	40	14	امتحان نهائي تحريري	4
% 20	20	طوال القصل	تكليفات / تقارير	5

كتاب المقرر ويتم تسليمه للطلاب في بداية الفصل	المرجع الأساسي للمقرر (لابد من كتابة البيانات كاملة وفقا لطريقة توثيق علمي)		
عبد الحميد توفيق زكي:تاريخ المصريين: التذوق الموسيقي وتاريخ الموسيقي المصرية، الهيئة المصرية العامة للكتاب 2021.	(لابد من حدابه البيانات حامله وقفا نظريفه نونيق علمي)	مصادر التعلم (الكتب والمراجع	
https://ar.wikipedia.org/wiki http://www.du.edu.eg/ https:// www.youtube.com/watch?=bnCua19 M E	المصادر الالكترونية (لابد من إضافة الروابط)	العلمية وغيرها)	
EKB - Microsoft office	المنصة التعليمية (لابد من إضافة الرابط)		
قاعة محاضرات مجهزة	الأجهزة		
Data show, White board	المستلزمات	التجهيزات	
Microsoft Teams	البرامج الالكترونية	التعليمية	
	معامل المهارات/ المحاكيات	المساندة للتعليم	
	المعامل الافتراضية	والتعلم *	
	أخرى (تذكر)		

منسق البرنامج	منسق المقرر	
أ.د. أحمد عبدالغفار		الإسم
Jean (Suntail		التوقيع

المعهد التكنولوجي العالى - مدينة العاشر من رمضان

قسم / العلوم الأساسية

توصيف مقرر

كود المقرر: HUM 106

اسم المقرر: التراث الأدبي المصرى

العلوم الأساسية	القسم القائم بتدريس المقرر
-----------------	----------------------------

1- معلومات أساسية:

ي	ثانية/المستوع	الفرقة ال	دراسية / دراسي الذي 4 المقرر	المستوى ال		إختياري	نوع المقرر			
	2		ات المعتمدة	عدد الساء	أكتوبر	20	لعام الأكاديمي فصل الدراسي			
2	إجمالي	0	المعامل:	0	التمارين:	2	المحاضرة:	ساعات الاتصال: 1		
						المتطلب السابق:				
			NARS 2	2018			المعايير الأكاديمية			
			201	6			تاريخ الموافقة على اللانحة			
					منسق المقرر					
			26/7/2		تاريخ اعتماد توصيف المقرر					
		قسم)	. من مجلس ال	حضر الاعتماد	(م		جهة مناقشة واعتماد توصيف المقرر			

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

يهدف المقرر إلى تعريف الطالب بالتميز الإقليمي لمصر في العصور القديمة والوسطى والحديثة وأثر عبقرية المكان على الفكر والوعي المصري وتجلياته في التراث الأدبي شعراً ونثراً من خلال الدرس التاريخي والنصي للأدب المصري في مراحله المختلفة كما يحتوي المقرر على التطورات الأدبية من منظور حضاري وإبداعي ـ المكتبة التراثية المصرية من منظور تاريخي متجدد ـ دراسة مفهوم وضعية العصور الوسطى في مصر والفرق بينها وبين العصور الوسطى في أوروبا ـ التراثية المصري وأدب الرحلات في الكتابات المصرية ـ التأليف الموسوعي في مصر و الصياغة الأدبية في فن الموسوعات الطواهر الأدبية الغالبة على الأدب المصري - مناهج دراسة التراث الأدبي المصري ودلالاته ـ مدارس التأليف والإبداع في تاريخ الفكر المصري - مجالات الإبداع في الشعر المصري (الطبيعة المصرية ـ أدب الحروب ـ الموضوعات الجديدة والبيئة المصرية) ـ مدارس الكتابة الفنية على المستوى الرسمي وغيرها ـ تتبع التطبيق على النص والتحليل من خلال أبرز شعراء وكتاب التراث المصري من أمثال إبن نبتة المصري وابن سناء الملك وصولا إلى أدوار الدكتور محمد كامل حسين والأستاذ أمين الخولي والدكتور جمال حمدان في تناول التراث الأدبي المصري بالتحرير والدراسة المنهجية حول عبقرية المكان.

3- نواتج التعلم للمقرر:

اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر	مخرجات البرنامج / المعايير الأكاديمية المتبناة (التي يحققها المقرر تبعا للمصفوفة في توصيف البرنامج)			
عند الانتهاء من المقرر سيكون الطالب قادرا على	A3,A4, A5, A6,A10			
النص	الكود	النص	الكود	
يتعرف على أهمية دراسة التراث الادبى المصرى	LO1	تطبيق عمليات التصميم الهندسي إلنتاج حلول فعالة		
يتعرف على أهم المؤثرات التي ساهمت في تكوين التراث الحضارى.	LO2	من حيث التكلفة تلبي االحتياجات النوعية مع مراعاة الجوانب العالمية والثقافية واالاجتماعية واالقتصادية والبينية واألخالقية وغيرها من الجوانب المتسقة مع النظام والظروف وضمن مبادئ وسياق التصميم والتنمية التطوير المستدامين.	A3	
يلخص مصادرومكانة التراث الحضارى و تأثيره في مقومات بقاء وإستمرارالأمم وفقا لدورها الريادي والحضاري.	LO3			
يستنتج الدور الحيوى والرئيسى التراث الادبي المصرى	LO4		A4	
يربط بين التأثير والتأثر بين الحضارات القديمة و الحديثة.	LO5	الاستفادة من التقنيات المعاصرة، والممارسات والمعايير، وإرشادات الجودة، ومتطلبات الصحة		
يقارن بين الحضارة العربية الاسلامية والحضارات الحديثة و يربط بين محتوات المنهج والأحداث التي يمر بها عالمنا العربى الإسلامي .	LO6	والمعايير، والقضايا البيئية ومبادئ إدارة المخاطر.	A4	
يثمن قيمة العلم والمعرفة و يثمن دور العقول العربية الاسلامية التي أبدعت في كافة الميادين.	LO7			
يستخدم تكنولوجيا المعلومات بما يخدم الممارسة المهنية في مجال التراث الحضارى.	LO8	ممارسة تقنيات البحث وأساليب التحقيق كجزء لايتجزأ من التعلم.	A5	
يظهر مهارات إدارة الوقت بكفاءة في مجال أى مهنة ترتبط بالتراث الحضارى.	LO9	التخطيط والإشراف والرقابة علي تنفيذ المشاريع الهندسية مع مراعاة متطلبات الحرف الأخري	A6	
تعزيز العديد من السلوكيات والمهارات داخل وخارج نطاق العمل بحيث يعمل ضمن فريق يظهر مهارات التواصل مع الآخرين، وكذلك قدرات التعلم الذاتى .	LO10	اكتساب المعارف الجديدة وتطبيقها، وممارسة المعارف الجديدة وتطبيقها، وممارسة المتعام الذاتي وغيرها مدى الحياة.	A10	

4 طرق التعليم والتعلم للمقرر:

يس شر	التدر المبا	ستراتيجيات التعلم بمساعدة التعلومات التعلومات التعلومات التعلومات المعلومات التعلومات التعلومات التعلومات المعلومات التعلومات التعلوم التعلومات التعلوم الت									استراتي				
المحاضرات	التمارين العملية والتجارب	العصف الذهنى	التعلم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير الأبحاث	الحوار والمناقشة	التدريب الميدائي	الزيارات الميدائية	التعلم الذاتى	التطم بالإكتشاف	برامج المحاكاة أو النمذجة	المعامل الافتراضية	التعلم الالكترونى	الذكاء الإصطناعي في التعليم
		V				1	1			1				1	

الجدول الدراسي للمقرر:

	عدد ساعات التعلم المتوقعة				المحتوى العلمي للمقرر	
نواتج التعلم	يب	تدر	تدریس	إجمالي عدد الساعات	موضوعات المقرر)	ر <u>قم</u> الاسبوع
التي يحققها المقرر	عملی	تمارين	نظري	الأسبوعية		الدراسي
LO 1	0	0	2	2	تعريف بالمقرر الدراسى ومقدمة عامه	1
LO 3	0	0	2	2	زعم المتعصبين أن كل الإنجازات العلمية من إبداعات الحضارة الغربية.	2
LO 1,2	0	0	2	2	الأرقام من إبداعات العلماء العرب و المسلمين	3
LO 5	0	0	2	2	قيام الحضارات على العلم والدين	4
LO 5,6	0	0	2	2	الحضارة الفرعونية بين الإبداع و التشكيك.	5
LO 4,8	0	0	2	2	التراث الحضارى ذاكرة الامم.	6
		الدراسي	ف الفصل	امتحان منتص	مراجعة و	7
LO 2,3	0	0	2	2	العلم تراث حضارى مشترك .	8
LO 7	0	0	2	2	لماذا شيد قدماء المصريين أكبر الاهرامات على هضبة صخرية صلبة	9
LO 2,6	0	0	2	2	الأندلس الباب الغربى الذى إنتقلت عبره علوم العرب والمسلمين الى اوروبا.	10
LO 3,7,10	0	0	2	2	أهمية دراسة التراث الحضارى	11
LO 6, 8	0	0	2	2	أهمية دراسة المقررات الثقافية	12
LO 4, 8	0	0	2	2	مراجعة عامه	13
		هائية	راسي المذ	ات الفصل الد	إختبار	14

-طرق تقييم الطلاب

النسبة المئوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	٩
% 10	10	5	امتحان 1 تحريري (أعمال سنة)	1
% 10	10	12	امتحان 2 تحريري (أعمال سنة)	2
% 20	20	7	امتحان منتصف الفصل الدراسي	3
% 40	40	14	امتحان نهائي تحريري	4
% 20	20	طوال الفصل	تكليفات / تقارير	5

5- مصادر التعلم والتسهيلات المادية:

كتاب المقرر ويتم تسليمه للطلاب في بداية الفصل	المرجع الأساسي للمقرر (لابد من كتابة البيانات كاملة وفقا لطريقة توثيق علمي)	
1- عوض مرسي الغبري، در اسك في الأنب المصري، الدار الدولية	,	
للاستثمارات الثقافية، القاهرة الطبعة الأولى، 2017		
2- أحمد عبد الرازق، الحضارة الإسلامية في العصور		hh
الوسطى، القاهرة، 2020 .	المراجع الأخرى	مصادر التعلم
3- عبد الرحمن بدوى:دور العرب في تكوين الفكر		(الكتب والمراجع العلمية وغيرها)
الاوربى.الهيئة المصرية العامة للكتاب 2021		*
https://ar.wikipedia.org/wiki	المصادر الالكترونية	
http://www.du.edu.eg/	(لابد من إضافة الروابط)	
https://www.youtube.com/watch?=bnCua19 M E	· · · · · · · · · · · · · · · · · · ·	
EKB - Microsoft office	المنصة التعليمية	
	(لابد من إضافة الرابط)	
قاعة محاضرات مجهزة	الأجهزة	
Data show, White board	المستلزمات	التجهيزات
Microsoft Teams	البرامج الالكترونية	التعليمية
	معامل المهارات/ المحاكيات	المساندة للتعليم
	المعامل الافتراضية	والتعلم *
	أخرى (تذكر)	

منسق البرنامج	منسق المقرر	
أ.د. أحمد عبدالغفار		الإسم
Jedler)		التوقيع

المعهد التكنولوجي العالى - مدينة العاشر من رمضان

قسم / العلوم الأساسية

توصيف مقرر

كود المقرر: HUM 107

اسم المقرر: الإتجاهات الفنية المعاصرة

	العلوم الأساسية	القسم القائم بتدريس المقرر
--	-----------------	----------------------------

1- معلومات أساسية:

ي	ثانية/المستوع	الفرقة ال	دراسية / دراسي الذي 4 المقرر	المستوى ال		إختياري	نوع المقرر			
	2		ات المعتمدة	عدد الساء	أكتوبر	20	لعام الأكاديمي فصل الدراسي			
2	إجمالي	0	المعامل:	0	التمارين:	2	المحاضرة:	ساعات الاتصال: 1		
						المتطلب السابق:				
			NARS 2	2018			المعايير الأكاديمية			
			201	6			تاريخ الموافقة على اللانحة			
					منسق المقرر					
			26/7/2		تاريخ اعتماد توصيف المقرر					
		قسم)	. من مجلس ال	حضر الاعتماد	(م		جهة مناقشة واعتماد توصيف المقرر			

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

يهدف المقرر إلى: إكساب الطالب القدرة على التذوق الفني - إكساب الطالب مهارة قراءة الأعمال الفنية وذلك من خلال دراسة الفلسفات والاتجاهات المذاهب المعاصرة الحديثة وما بعد الحداثة ويحتوي المقرر على الموضوعات التالية: التعريف بالفنون القديمة كمدخل للفلسفات الكلاسيكية - مدخل للفنون الكلاسيكية والأصول اليونانية - الكلاسيكية الجديدة (أهم المصورين و المثاليين) - الحداثة وحركة التأثيريين الفرنسيين (صالون الشباب) سيزان، مافية، مونييه - التكعيبية (باراك، بيكاسو) ، المستقبلية (بوتشيني) البعد الزمني- التجريديه (كاندنسيكي- موندريان) - الاتجاه التعبيري (إدوارد مونخ ، فان جوخ) في ألمانيا الوحشية - التلقائية (بول كيلي- خوان ميرو) - الاتجاهات الحديثة في الفنون المصريين المصريين المثاليين (محمود المعدي جرجس- السجيني - الوشاحي) - المصورين المصريين (محمود سعيد، يوسف كامل، راغب عياد، عبد العزيز درويش) فنانين مصريين عالميين (صلاح عبد الكريم، حامد ندى، ناجي شاكر) - ما بعد الحداثة وأهم اتجاهاتها.

3- نواتج التعلم للمقرر:

اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر	مخرجات البرنامج / المعايير الأكاديمية المتبناة (التي يحققها المقرر تبعا للمصفوفة في توصيف البرنامج)				
عند الانتهاء من المقرر سيكون الطالب قادرا على	.	A3,A4, A5, A6,A10			
النص	الكود	النص	الكود		
يتعرف على أهمية الفنون الحديثة المعاصرة خاصة (الابداع الرسومي)	LO1	تطبيق عمليات التصميم الهندسي النتاج حلول فعالة من حيث التكلفة تلبي االحتياجات النوعية مع مراعاة			
يتعرف على أهم المؤثرات التي ساهمت في إظهار الأعمال الفنية للرساميين العالميين .	LO2	الجوانب العالمية والثقافية واالاجتماعية واالقتصادية والبينية والخالقية وغيرها من الجوانب المتسقة مع النظام والظروف وضمن مبادئ وسياق التصميم والتنمية التطوير المستدامين.	A3		
يلخص مصادرومكانة الأعمال الفنينة للرساميين في أوربا القديمة والمعاصرة	LO3				
يستنتج الدور الحيوى والرئيسي للعمل الفني المعاصر يربط بين التأثير والتأثر بين الفنون الرسومية القديمة و الحديثة.	LO4 LO5	الاستفادة من التقنيات المعاصرة، والممارسات			
يربط بين الاعمال الفنية المصرية المعاصرة و الفنية المصرية القديمة ، و يربط بين الفلسفيات القديمة والمعاصرة في الاعمال الفنية.	LO6	و المعايير، وإرشادات الجودة، ومتطلبات الصحة والمعايير، والشخاطر.	A4		
يثمن قيمة العلم والمعرفة و يثمن دور العقول المصرية التي أبدعت في كافة الميادين.	LO7				
يستخدم تكنولوجيا المعلومات بما يخدم الممارسة المهنية في مجال الفنون.	LO8	ممارسة تقنيات البحث وأساليب التحقيق كجزء لايتجزأ من التعلم.	A5		
يظهر مهارات إدارة الوقت بكفاءة في مجال أى مهنة ترتبط بالفنون .	LO9	التخطيط والإشراف والرقابة على تنفيذ المشاريع الهندسية مع مراعاة متطلبات الحرف الأخري	A6		
تعزيز العديد من السلوكيات والمهارات داخل وخارج نطاق العمل بحيث يعمل ضمن فريق يظهر مهارات التواصل مع الآخرين، و كذلك قدرات التعلم الذاتي .	LO10	اكتساب المعارف الجديدة وتطبيقها، وممارسة استراتيجيات التعلم الذاتي وغيرها مدى الحياة.	A10		

4 طرق التعليم والتعلم للمقرر:

بس ثىر	التدري المبا	راتيجيات التعلم بمساعدة التدريس الغير مباشر تكنولوجيا المعلومات													
المحاضرات	التمارين العملية والتجارب	العصف الذهنى	التعلم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير الأبحاث	الحوار والمناقشة	ائتدريب الميداني	الزيارات الميدانية	التعلم الذاتى	التطم بالإكتشاف	برامج المحاكاة أو النمنجة	المعامل الافتراضية	التعلم الالكترونى	الذكاء الإصطناعي في التعليم
														$\sqrt{}$	

الجدول الدراسي للمقرر:

	لمتوقعة	عات التعلم ا	عدد ساد	إجمالي عدد	المحتوى العلمي للمقرر	
نواتج التعلم التي يحققها المقرر	تدريب		تدریس	إجماعي طاد الساعات الأسبوعية	(موضوعات المقرر)	ر <u>ق</u> م الاسبوع الدراسي
الي يسه المحرر	عملي	تمارين	نظري	<u> </u>		
LO 1	0	0	2	2	التعريف بالفنون القديمة كمدخل للفلسفات الكلاسيكية	1
LO 3	0	0	2	2	مدخل للفنون الكلاسيكية والأصول اليونانية	2
LO 1,2	0	0	2	2	الكلاسيكية الجديدة (أهم المصورين و المثاليين) الحداثة وحركة التأثيريين الفرنسيين (صالون الشباب) سيزان، مافية، مونييه	3
LO 5	0	0	2	2	التكعيبية (باراك، بيكاسو) ، المستقبلية (بوتشيني).	4
LO 5,6	0	0	2	2	البعد الزمني- التجريديه (كاندنسيكي- موندريان)	5
LO 4,8	0	0	2	2	الاتجاه التعبيري (إدوارد مونخ ، فان جوخ) في ألمانيا الوحشية	6
		لدراسي	ف القصل ا	امتحان منتصا	مراجعة و	7
LO 2,3	0	0	2	2	الاتجاهات الحديثة والفن الحر	8
LO 7	0	0	2	2	الاتجاهات الحديثة في الفنون المصرية (الحركة التشكيلية المصرية المعاصرة)	9
LO 2,6	0	0	2	2	الفنانين المصريين المثاليين (محمود مختار ـ صبحي جرجس ـ السجيني ــ الوشاحي)	10
LO 3,7,10	0	0	2	2	أالمصورين المصريين (محمود سعيد، يوسف كامل، راغب عياد، عبد العزيز درويش) فناتين مصريين عالميين (صلاح عبد الكريم، حامد ندى، ناجي شاكر)	11
LO 6, 8	0	0	2	2	ما بعد الحداثة وأهم اتجاهاتها	12
LO 4, 8	0	0	2	2	مراجعة عامه	13
		ائية	راسي النه	رات القصل الد	إختبا	14

طرق تقييم الطلاب

سبة المنوية لي درجة المقرر	در حات التهييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	٩
% 10	10	5	امتحان 1 تحريري (أعمال سنة)	1
% 10	10	12	امتحان 2 تحريري (أعمال سنة)	2
% 20	20	7	امتحان منتصف الفصل الدراسي	3
% 40	40	14	امتحان نهائي تحريري	4
% 20	20	طوال الفصل	تكليفات / تقارير	5

5- مصادر التعلم والتسهيلات المادية:

كتاب المقرر ويتم تسليمه للطلاب في بداية الفصل	المرجع الأساسي للمقرر (لابد من كتابة البيانات كاملة وفقا لطريقة توثيق علمي)	
محمود خالد بشايرة ، التربية الفنية وتنمية التفكير-اتجاهات حديثة في التدريس، عالم الكتب الحديث 25أبريل 2019	المراجع الأخرى	مصادر التعلم (الكتب والمراجع
https://ar.wikipedia.org/wiki http://www.du.edu.eg/ https:// www.youtube.com/watch?=bnCua19 M E	المصادر الالكترونية (لابد من إضافة الروابط)	العلمية وغيرها)
EKB - Microsoft office	المنصة التعليمية (لابد من إضافة الرابط)	
قاعة محاضرات مجهزة	الأجهزة	
Data show, White board	المستلزمات	التجهيزات
Microsoft Teams	البرامج الالكترونية	التعليمية
	معامل المهارات/ المحاكيات	المساندة للتعليم
	المعامل الافتراضية	والتعلم *
	أخرى (تذكر)	

منسق البرنامج	منسق المقرر	
أ.د. أحمد عبدالغفار		الإسم
Jean (Sumball		التوقيع

The Higher Technological Institute (HTI) – 10th of Ramadan City

Department of Basic Sciences

Course Specification

Course name: French Language | Course Code: LNG 101

Department participating in delivery of the course	Basic Sciences

1. Basic information:

Course Type	Elective				Academic level at which the course is taught		SENIOR 2	
Term/ Academic year	Oct.		2025/20	2025/2026		Credit Hours:		
Contact Hours	Lecture:	2	Tutorial:	Tutorial: 0		0	Total	2
Pre-Requisite		_						
Academic standards			NARS 2018					
Bylaw Approval			2016					
Course Coordinator								
Course Specification Approval Date			7/26/2025					
Course Specification Approval			The division council minute of department					

2. Course Overview (Brief summary of scientific content):

An elementary French course. Drill in pronunciation, elementary principles of inflection and basic sentence patterns. Reading of easy texts. Review of grammatical patterns. Expansion of conversational and written skills and vocabulary.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	ram Outcomes (NARS/ARS) ding to the matrix in the program specs)	Course Learning Outcomes			
	(A8,A10)	Upon co	Upon completion of the course, the student will be able to:		
Code	Text	Code	Text		
		L01	Have a mix of skills in French Language.		
		LO2	Study different grammatical Rules.		
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences	LO3	Enhance students' abilities in expressing themselves.		
	using contemporary tools.	LO4	Apply the principle of grammatical rules in their usage of French.		
		LO5	Apply the four skills of language freely.		
		LO6	Express themselves in French with confidence.		
	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies	L07	Upgrade the capability of usage of the French language in various topics.		
A10		LO8	Gain knowledge of general vocabulary that would help the students in various topics.		
	suutegies	LO9	Enhance the degree of awareness to participate professionally in their life.		
		LO10	Work effectively in team of multi- disciplinary or multi-culture.		

I. Course Teaching and Learning Methods:

	ect ructio 1		Indirect Instruction							7	Inforn Fechn isted	ology	-		
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
		$\sqrt{}$				V				$\sqrt{}$				V	

Course Schedule:

Week	Scientific content of the course	Total	Expecte Lea	LOs		
No.	(Course Topics)	Weekly Hours	Theoretical	Trai	covered by course	
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	course
1	Lecon 1: La Meteo.	2	2	0	0	LO3
2	Lecon 2: Hier et avant heir.	2	2	0	0	LO2
3	Lecon 3: Lettre d'une illettree	2	2	0	0	LO1
4	Lecon 4: Le recit de vie	2	2	0	0	LO4
5	Lecon 5: Comment ecrivez-vous?	2	2	0	0	LO2&LO7
6	Lecon 6: Dis-moi la verite!	2	2	0	0	LO2&LO5
7		Revision	and Mid Exan	n		
8	Lecon 7: Quelle bonne odeur!	2	2	0	0	LO3, LO4&LO5
9	Lecon 8: Va plus vite.	2	2	0	0	LO6
10	Supplementary Material and Quiz	2	2	0	0	LO5&LO6
11	Presentations	2	2	0	0	LO5
12	Supplementary materials and Quiz	2	2	0	0	LO9
13	Revision and Quiz	2	2	0	0	LO4
14	14 Final Exam.					

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	QUIZ 1 written (Semester work)	4	10	10%
2	QUIZ 2 written (Semester work)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15	40	40 %
5	Assignments (Report &Sheet)	10,12	20	20%

6- Learning Resources and Supportive Facilities *

	The main (essential) reference (must be written in full according to the scientific documentation method)	Available Presentation (handed to students' part by part).		
Learning resources (books, scientific references, etc.) *	Other References	1-En Francais "; HTI; copie papier disponible.2021. 2-Presentation disponible (remis aux etudiants partie par partie).2022 3-Grammaire Francais en usage.2022 4-Vocabulaire Francais utilise.2022		
etc.)	Electronic Sources (Links must be added)	• https://www.ecpi.edu/blog/what-is-business-administration-all-about		
	Learning Platforms (Links must be added)	EKB - Microsoft office		
Supportive facilities &	Devices/Instruments	Notebook and data show equipped lecture room.		
equipment for teaching and learning *	Supplies	Teaching aids and computers.		
	Skill Labs/ Simulators			
	Other (to be mentioned)	Notebook and data show equipped lecture room.		

	Course Coordinator	Program Coordinator
Name		Prof. Ahmed Abd El-Gafar
Signature		- Liebline)

The Higher Technological Institute (HTI) – 10th of Ramadan City

Department of Basic Sciences

Course Specification

Course name : German Language | Course Code: LNG 102

Department participating in delivery of the course	Basic Sciences
--	----------------

1. Basic information:

Course Type	Elective				Academic level at which the course is taught		SENIOR 1	
Term/ Academic year	Oct.		2025/2026		Credit Hours:		2	
Contact Hours	Lecture:	2	Tutorial:	0	Lab.:	0	Total	2
Pre-Requisite								
Academic standards			NARS 2018					
Bylaw	2016							
Course (Dr. Hoda Arafa							
Course Specifica	7/26/2025							
Course Specif	The	The division council minute of department						

2. Course Overview (Brief summary of scientific content):

Beginner's course. Development of speaking ability and mastering of German basic structures. Reading and understanding of simple texts. Systematic discussion of grammatical difficulties. Oral practice and reading of more difficult texts. Practice in guided composition.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	Program Outcomes (NARS/ARS) cording to the matrix in the program specs)	Course Learning Outcomes				
	(A8, A9, A10)	Upon com	pletion of the course, the student will be able to:			
Code	Text	Code Text				
		LO1	Have a mix of skills in German Language.			
A8	Enhance and Develop the students' abilities and awareness for appropriate analysis and interpretation to all the scientific topics written in German words.	LO2	Mastering basic German sentence structure, verb conjugations, articles, and essential vocabulary for every day communication.			
A6		LO3	Enhance students' abilities in expressing themselves			
	words.	LO4	Comprehending longer conversations and texts on familiar topics.			
		LO5	Apply the four skills of language freely.			
А9	Communicate effectively, verbally and in writing with a range of audiences.		Develop communicative competence, encompassing listening, speaking, reading and writing skills.			
A10	Acquire and apply new knowledge and practice through German language.	LO7	Writing clear, coherent and well-structured essays, reports, and academic papers.			

4. Course Teaching and Learning Methods:

Direct Instruc	tion							rmation Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
		√				√	√			V				√	

Week	Scientific content of the course	Total	Expected num	nber of the Lea	arning Hours	LOs covered	
No.	(Course Topics)	Weekly	Theoretical	Tra	by course		
	· · · · · · · · · · · · · · · · · · ·	Hours	teaching (lectures)	Tutorial	Lab / Practical		
1	Abschnitt 1:Der Artikel, die Konjugation der Verben.	2	2	0		LO 1	
2	Abschnitt 1: Übungen, die Personal- pronomen, Negation, Alltagssituationen	2	2	0		LO 3	
3	Abschnitt 2: Der Unterricht, das Nomen, der Akkusativ, das Verb "haben"	2	2	0		LO 4	
4	Abschnit 2: Übungen, die Fragepronomen "Wer, Wen, Was", Altagssituationen	2	2	0		LO 1	
5	Quiz	2	2	0		LO 2, LO 7	
6	Abschnitt 3: Die Zahlen, die Zeit	2	2	0		LO 2, LO 5	
7	Midterm	Exam.			•	,	
8	Abschnitt 4 : Eine Reise, starke Verben, trennbare und untrennbare Verben	2	2	0		LO 3, LO 4, LO 5	
9	Abschnitt 4 : Übungen, Wortstellung, Präpositionen, Alltagssituationen	2	2	0		LO5	
10	Abschnitt 5 : Ein Freund kommt, der Dativ ,Verben mit dem Dativ und dem Akkusativ	2	2	0		LO 5, LO 6	
11	Abschnitt 5 : Übungen, die Possessivpronomen	2	2	0		LO 6	
12	Zusätzliche Material und Quiz	2	2	0		LO 5	
13	Projekt	2	2	0		LO 7	
14	Wiederholung und Quiz	2	2	0		LO 6, LO7	
15		Fin	al Exam.				

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	QUIZ 1 written (Semester work)	3	10	10%
2	QUIZ 2 written (Semester work)	9	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15	40	40 %
7	Assignments (Report &Sheet)	12	20	20%

<u>6-</u> <u>Learning Resources and Supportive Facilities</u>*

	The main (essential) reference (must be written in full according to the scientific documentation method)	Heinz Griesbach-Dora Schulz Deutsche Sprachlehre für Ausländer, 1995			
Learning resources (books, scientific references, etc.) *	Other References	 Friederike Jin & Ute Voβ Grammatik aktiv- Deutsch als Fremdspracshe 2. Aktualisierte Ausgabe, Aug. 2024 PONS Verben & Zeiten Trainieren Deutsch als Fremdsprache, Jan. 2020 Stephan Lübke Deutsche Grammatik in kleinen Schritten, Jun 2020 Julia Brodt Ein Semester in Hamburg: Roman – Deutsch leren mit Geschichten über das Leben in Deutschland, Dec. 2024 			
	Electronic Sources (Links must be added)	Deutsche Welle (DW)			
	Learning Platforms (Links must be added)	EKB - Microsoft office			
Supportive facilities &	Devices/Instruments	Notebook and data show equipped lecture room.			
equipment	Supplies	Teaching aids and computers.			
for	Skill Labs/ Simulators	Lab Rroom			
teaching and learning *	Other (to be mentioned)	Notebook and data show equipped lecture room.			

	Course Coordinator	Program Coordinator
Name	Dr. Hoda Arafa.	Prof. Ahmed Abdel Ghafar
Signature	حدی و فد	(كالمسالخفار

Higher Technological Institute (HTI) - 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Principle of Fluid Mechanics				
Course Code (according to the bylaw):	MEC 127				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>3</u>	1		4	
Course Type:	Compulsory				
The level to which the course was introduced:		JUNI	OR		
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>		
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr.Gamal	Nada_			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Covers fundamentals of fluid mechanics including basic physical laws governing the static and dynamics of fluids. It includes theory and applications of continuity, impulse-momentum, and Bernoulli equation principles. Fluid flow in piping systems, pneumatic, hydraulic and fluid measurements are covered. Introduction and types of fluid meters, velocity measurements, flow rate measurements.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	rogram Outcomes (ARS) ding to the matrix in the program specs)	(Course Learning Outcomes		
		Upon completion of the course, the studen will be able to:			
Code	Text	Code	Text		
	Identify, formulate, and solve complex engineering problems by applying	LO1	Relate fluid properties to the governing equations of fluid mechanics.		
A1	engineering fundamentals, basic science and mathematics.	LO2	Identify the laws of fluid statics and dynamics applicable to solving fluid mechanics problems.		
A2	Apply engineering design processes to produce costeffective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO3	Apply appropriate correlations to calculate flow conditions such as pressure, velocity, and flow rate.		
	Model, analyze and design physical systems applicable to the specific discipline by	LO4	Select appropriate devices for measuring specific flow conditions.		
B1	applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations.	LO5	Design piping flow systems using appropriate engineering methods.		
D1	Integrate a wide range of analytical tools, techniques, equipment, and software package to design and develop mechatronics systems	LO6	Analyze applications involving flow measurements or calculations using analytical methods.		

Dir Instr	uctio		Indirect Instruction							Information Technology- Assisted Learning					
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V				V	V			V				V	

Week	Scientific content of the course	Total	Expected number of the Learning Hours						
No.	(Course Topics)	Weekly Hours	Theoretical	Trai					
			teaching (lectures)	Tutorial / Practi		Other			
1	-Introduction to fluid mechanics, units and dimensionsFluid properties.	4	1	2	1	-			
2	-Fluid properties, continued - Problems	4	1	2	1	-			
3	-Fluid statics: Pressure at a point, pressure variation in a static fluid (Pascal's law) and hydrostatic law of pressure - Pressure measurements, manometers and pressure gages	4	1	2	1	-			
4	 Problems Forces on plane surface areas	4	1	2	1	-			
5	- Problems - Forces on curved surfaces	4	1	2	1	-			

6	ProblemsBuoyant force and stability of floating bodies	4	1	2	1	-
7	R	evision a	and Mid Exa	m		
8	-Fluid dynamics; Types of flow -Kinematics of flow, streamlines and streamtube	4	1	2	1	-
9	-Flow velocities, accelerations and continuity equation -Problems	4	1	2	1	ı
10	-Equation of motion along a streamline -Different forms of Bernoulli equation and its modification for real flow	4	1	2	1	-
11	- Problems -Application of Bernoulli equation in measurements of flow rate: orifice and Venturi meters	4	1	2	1	-
12	 Flow through pipes, friction and local losses for both laminar and turbulent flow Problems 	4	1	2	1	1
13	-Pipe connections (pipe networks) -Problems	4	1	2	1	-
14	Revision	4	1	2	1	-
15,16	Final Exam.					

Experiment Topics:

Serial	Experiment						
1	Pressure measurement and calibration						
2	Hydrostatic pressure force						
3	Reynolds number						
4	Verification of Bernoulli equation						
5	Orifice near the bottom of the tank						

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10 %
2	Exam 2 written (Semester work)	10	10	10 %
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook		20	20 %

<u>6-</u> Learning Resources and Supportive Facilities *

	The main (essential) reference (must be written in full according to the scientific documentation method)	Robert W. Fox, Alan T. McDonald and John W. "Introduction to Fluid Mechanics", 10th Edition, Mitchell, 2020. Yunus A. Çengel and John M. Cimbala "Fluid Mechanics Fundamentals and Applications" 4th Edition, Mcgraw-Hill, New York, 2018	
Learning resources (books, scientific references, etc.) *	Other References	Yunus A. Çengel, John M. Cimbala and Afshin J. Ghajar, "Fundamentals of Thermal-Fluid Sciences" Sixth Edition, Mcgraw-Hill, New York, 2021. Course Notes: Avilable as softcopy on Microsoft teams	
	Electronic Sources (Links must be added)		
	Learning Platforms (Links must be added)	EKB - Microsoft office	
Supportive	Devices/Instruments	Data- show and laptop	
facilities &	Supplies	White board	
equipment for	Electronic Programs	Microsoft teams	
teaching	Skill Labs/ Simulators		
and	Virtual Labs		
learning *	Other (to be mentioned)	Library	

	Course Coordinator	Program Coordinator
Name	Dr.Gamal Nada	Dr. Ahmed Abdalbadia
Signature	Dr. Gon Woh	Paraulling

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Engineer	ring Eco	nomics	
Course Code (according to the bylaw):	MNG 102			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	2	1		3
Course Type:	Compulsory			
The level to which the course was introduced:	JUNIOR			
Academic Program:	Mechanica	l Engineer	ing	
Institute:	Higher Technological Institute			
Name of Course Coordinator:	Dr. Muhammad Tayss			r
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			partment
Course Specification Approval Date:		8/12/	/2025	

2. Course Overview (Brief summary of scientific content):

Introduction to Economy: Basic Concepts, Varieties of Market Structure, The Law of Supply and Demand, Elasticity, Different Types of Economy, Accounting Income and Cash Flow, The Objectives of the Firms, Balance Sheet (BS). Introduction To Engineering Economy: Engineering Decision Making, Break - Even Analysis, Production Function, Payback Period Method, Payback Period Method. Time Value of Money: Simple Interest Rate, Compound Interest, Discreet cash flow and Economic Equivalence, Evaluating of the Projects (Present Worth, Annual worth, and Capitalized Cost), Nominal and Effective Interest Rate. Rate - Of Return ROR Computations: Rate of Return calculations using A Present worth PW, Rate of Return Calculation by Using Annual worth EAW, Rate of Return Evaluation for Multiple Alternatives. Depreciation Models: Nature of Depreciation,

Depreciation Conventional Methods, Methods Based on Asset Usage, Switching Between Depreciation Models.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS).

	Program Outcomes (NARS) (according to the matrix in the program specs)		Course Learning Outcomes		
	A1, A2		Upon completion of the course, the student will be able to:		
Code	Text	Code	Text		
		LO1	Identify concepts of cost and revenue in engineering economic decisions.		
A1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	LO2	Explain the concept and purpose of breakeven analysis in evaluating economic viability.		
		LO3	Classify cost elements as fixed or variable and justify the classification within project scenarios.		
	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO4	Apply breakeven analysis techniques to assess company profitability in realistic business cases.		
A2		LO5	Analyze project data to evaluate profitability and identify potential financial risks.		
A2		LO6	Apply nominal and effective interest rate formulas to solve engineering economic problems in case studies.		
		LO7	Design a proposed project by identifying its cost elements and assessing its economic feasibility.		

Dire Instru					Indi	rect Iı	nstruc	tion				r	Гесhn	nation ology Learn	
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
V	$\sqrt{}$	V			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$								$\sqrt{}$

Week	Scientific content of the course	Total Weekly	Expected numbe		earning
No.	(Course Topics)	Hours	Theoretical teaching	Training	
			(lectures)	Tutorial	/ Practical Lab
1	Introduction	3	2	1	
2	Description and Role in Decision Making	3	2	1	
3	Simple Interest	3	2	1	
4	Cost Concepts and Behavior	3	2	1	
5	Cost Concepts and Behavior	3	2	1	
6	Life-Cycle Product Costing and Pricing	3	2	1	
7	Re	evision and M	lid Exam		
8	Introduction to Use Spreadsheet	3	2	1	
9	Factors: How Time and Interest Affect Money	3	2	1	
10	PW, FW, EUAS / EUAC	3	2	1	
11	Net present value, rate of interest	3	2	1	
12	Payback period, benefit.	3	2	1	

Page 3 of 5

13	Choosing among alternatives	3	2	1	
14	Introduction to Use Spreadsheet	3	2	1	
15,16		Final Exa	ım.		

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	4	10	10 %
2	Exam 2 written (Semester work or quiz)	6	10	10 %
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	Assignments / Project /Portfolio/ Logbook	10,12	20	20 %

6- Learning Resources and Supportive Facilities *

	The main (essential) reference (must be written in full according to the scientific documentation method)	Engineering economy, le and blank, P.E Anthony, seventh edition,2018 build by Mc Grain
Learning resources (books, scientific references,	Other References	 Engineering economy analysis, 9th edition, Donald G newman and Ted G., 2004 published by oxford university, press, Inc. Jose A. Sepulveda, William E. Souder & Byron S. Gottfried, "Engineering Economics", Mc-Graw-Hill Book Company, NW,1984. H. G. Thuesen, W. J. Fabrycky & G. J.
etc.) *		Thuesen, "Engineering Economy", Prentice-Hall, Inc., NJ, 1971.
		• E. Paul DeGarmo, William G. Sullivan & James A. Bontadelli, "Engineering Economy", Macmillan publishing company,Nw,1990.
	Electronic Sources (Links must be added)	N/A
	Learning Platforms (Links must be added)	EKB - Microsoft office
	Devices/Instruments	Data Show

Supportive	Supplies	N/A
facilities &	Electronic Programs	MS-Teams
equipment	Skill Labs/ Simulators	N/A
for teaching and	Virtual Labs	N/A
learning *	Other (to be mentioned)	N/A

	Course Coordinator	Program Coordinator
Name	Dr. Muhammad Tayssir	Dr. Mohamed Ashraf
Signature	محمد تليبير	Cils

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Electronics Lab			
Course Code (according to the bylaw):	MTE 152			
Department/s that participated in the teaching:	<u>Me</u>	chanical E	ngineerin	<u>g</u>
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)		<u>3</u>		<u>3</u>
Course Type:	Compulsory			
The level to which the course was introduced:	SENIOR 1			
Academic Program:	Mechatron	nics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Assoc. Prof. Dr. Mona A. Younis			nis
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			ırtment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

Safety Instructions - Junction Diode (Zener – voltage regulator –etc..) – Transistors – Using com3lab or any other equipment for studying and analysis of different electronics circuits.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes		
A5&A6&A7&A8, D3&D4		Upon completion of the course, the stude will be able to:		
Code	Text	Code	Text	
A5	Practice research techniques and methods of investigation as an inherent part of learning.	LO1.	Identify the semiconductor material, currents, types (n-type, p-type) and pn junction properties by research techniques.	
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO2.	Plan for desiging electronic cirucits to studying the operation of BJT, JFET, diodes	
A7	Function efficiently as an individual and as a member of multi-disciplinary and multi-cultural teams.	LO3.	Collaborate effectively in diverse teams to complete Conducting different experiments using electronic electronic components.	
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO4.	Apply measurement operations using probes in the kit to measure current and volt and documentation.	

D3	Plan, manage, and implement designs of mechatronics systems, subsystems, modules, and machine elements based on traditional and contemporary technological, professional, and computer-aided tools.	LO5.	Simulate electronics circuits using multi sim software.
D4	Estimate and measure the performance of an electrical/ electronic/ digital/ mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO6.	Conduct measuring instrument embedded in the kit to measuring the output voltage and current and display waveform. To be able to writing a report to describing the experiment steps and outcome

Dire Instru			Indirect Instruction					Information Technology- Assisted Learning			-				
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V	V			V	V					V	V		

Week No.	Scientific content of the course (Course Topics)	Total Weekly	•	ed number of the arning Hours	others
140.	(Course Topics)	Hours	Theoretical	Training	

			teaching (lectures)	Tutorial	/ Practical Lab	
1	Familiarizes with the ELVIS kit	3	0	0	3	-
2	Diode characteristics analysis	3	0	0	3	-
3	Diode application (half / full wave rectifier)	3	0	0	3	-
4	Limiting and clamping circuits	3	0	0	3	-
5	Zener diode characteristics analysis	3	0	0	3	-
6	Zener diode application (voltage regulation, load regulation)	3	0	0	3	-
7		Revision	and Mid E	xam		
8	BJT characteristics analysis	3	0	0	3	-
9	BJT as switch	3	0	0	3	-
10	BJT as amplifer	3	0	0	3	-
11	JFET characteristics and application	3	0	0	3	-
12	MOSFT characteristics and application	3	0	0	3	-
13	Revision for part 1.	3	0	0	3	-
14	Revision for part 2	3	0	0	3	-
15,16	Final Exam.					

Experiment Topics: (If any)

Serial	Experiment		
1st	Diode characteristics analysis		
2nd	Diode application (half / full wave rectifier)		
3rd	Limiting and clamping circuits		
4th	Zener diode characteristics analysis		
5th	Zener diode application (voltage regulation, load regulation)		
6th	BJT characteristics analysis		
7th	BJT as switch, BJT as amplifer		
8th	JFET characteristics and application		
9th	MOSFT characteristics and application		

Page 4 of 5

5- methods of student passements

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	4	15	15%
2	Exam 2 written (Semester work or quiz)	11	15	15%
3	Midterm exam	As scheduled	30	30%
4	Final Written Exam	AS scheduled 30		30%
5	Assignments / Project /Portfolio/ Logbook	AS scheduled	10	10 %

6- Learning Resources and Supportive Facilities *

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	Sedra, A. S., & Smith, K. C. (2021). Microelectronic Circuits (8th Edition).
scientific references, etc.) *	Other References	Boylestad, R. L., & Nashelsky, L. (2020). <i>Electronic Devices and Circuit Theory</i> (12th Edition). Pearson.
Supportive facilities & equipment for	Devices/Instruments	COM3Lab (or equivalent electronics lab kit) DC Power Supply Oscilloscope Multimeters
teaching and learning *	Supplies	Breadboards and electronic components (diodes, Zener diodes, transistors, resistors, capacitors)

Course Coordinator		Program Coordinator
Name	Assoc. Mona A. Younis	Dr. Ahmed abd el badii
Signature	MONA A. YOUNIS	Paraullia

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Automatic control and application				
Course Code (according to the bylaw):	MTE 156				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Other		Total	
(according to the bylaw)	<u>4</u>	<u>1</u>		<u>5</u>	
Course Type:	Compulsory				
The level to which the course was introduced:	SENIOR 1				
Academic Program:	<u>Mechatron</u>	ics Engine	<u>eering</u>		
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Sara G.Seadby				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment	
Course Specification Approval Date:			025		

2. Course Overview (Brief summary of scientific content):

Modeling of system (transfer function, block diagram, state space, signal flow graphs, differential equation), System analysis (Laplace transform, time response, stability system, root locus), System design (compensation techniques, PID controller), and applications.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(6	Program Outcomes (ARS) according to the matrix in the program specs)	Course Learning Outcomes		
	A1,A2,A10,D2,D4		completion of the course, student will be able to:	
Code	Text	Code	Text	
A 1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	LO1	Identify continuous and discrete signals using basic mathematical functions.	
		LO2	Distinguish different types and shapes of signals.	
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO3	Apply suitable mathematical methods in analyzing and evaluating the stability of digital systems.	
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	LO4	Analyze applications of signals by searching for information to develop knowledge and skills that support life-long learning.	
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design	LO5	Model digital systems by formulating their mathematical difference equations.	
JZ	to openinge this design		Determine the transfer function of a system and test it using standard input signals.	
D4	Estimate and measure the performance of an electrical/electronic/digital/mechanical/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO7	Analyze system performance under standard input signals.	

		LO8	Evaluate responses convergence behavi to standard inputs.	
--	--	-----	---	--

Dir Instru	uctio		Indirect Instruction							Information Technology- Assisted Learning					
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V	V	V	V	V	V			V	V	V		V	

Week	Scientific content of the course	Total	Expected number of the Learning Hours					
No.	(Course Topics)	Weekly	Theoretical	Trai	ning	Other		
	, ,	Hours	teaching (lectures)	Tutorial	/ Practical Lab			
	Introduction to automatic	3	2	1	-	-		
1	control systems and applications							
2	Transfer function	3	2	1	-	-		
3	Block diagram	3	2	1	-	-		
4	State space	3	2	1	-	-		
5	Signal flow graphs	3	2	1	-	-		

6	Differential equation	3	2	1	-	-						
7	Revision and Mid Exam											
8	Time domain analysis	3	2	1	-	-						
9	Frequency domain analysis	3	2	1	-	-						
10	Root locus	3	2	1	-	-						
11	Compensation techniques	3	2	1	-	-						
12	Compensation techniques	3	2	1	-	-						
13	PID controller, and applications	3	2	1	-	-						
14	Revision	3	2	1	-	-						
15,16	Final Exam.											

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10%
2	Exam 2 written (Semester work)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	20	20%

6- Learning Resources and Supportive Facilities *

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	RICHARD C . DORF, MODERN 2017 CONTROL SYSTEMS,
(books, scientific	Other References	
references, etc.) *	Electronic Sources (Links must be added)	

	Learning Platforms (Links must be added)	EKB - Microsoft office
	Devices/Instruments	Non
Supportive facilities & equipment	Supplies	Non
	nent Electronic Programs	Non
for teaching	Skill Labs/ Simulators	Non
and learning *	Virtual Labs	Non
	Other (to be mentioned)	Non

	Course Coordinator	Program Coordinator
Name	Dr. Sara G.Seadby	Dr. Ahmed Abdalbadia
Signature	Sara G.Seadby	Serenthis

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Analysis & Research Skills			
Course Code (according to the bylaw):	HUM 109			
Department/s that participated in the teaching:		BASIC SC	CIENCE	
Total number of credit hours of the course:	Theoretical	Tutorial	Other (specify)	Total
(according to the bylaw)	1	<u>2</u>		<u>3</u>
Course Type:		Elect	ive	
The level to which the course was introduced:		JUNI	OR	
Academic Program:	ALL ENGI	NEERING	PROGRAM	<u>1S</u>
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			
Course Specification Approval Date:		7/26/2	025	

2. Course Overview (Brief summary of scientific content):

To Introduce Analysis & Research Skills this include studying the framework for analyzing engineering problems considering technical, economic, environmental, and ethical issues. Phases of problem solving (Understanding the problem and formulating it, Solution plan, implementation plan, Evaluation, and Revision). Role of creativity in the analysis for different alternatives. SWOT (strengths, Weaknesses, Opportunities, and Threats) analysis for different alternatives. Cost – Benefit analysis and Risk analysis. Role

of cooperation and team – work in analyzing large engineering problems. Importance of finding the relevant data, information, and knowledge. Basics Web search methods and how to formulate search engine queries using logical connectives (e.g. AND, OR, NOT). Phrase, title, domain, URL, and link search. Evaluating search results, choosing the appropriate search engine. Importance of evaluating the credibility of the different web sites.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	ram Outcomes (NARS/ARS) ding to the matrix in the program specs)		Course Learning Outcomes
	(A6,A8, A9, A10)	Upon co	ompletion of the course, the student will be able to:
Code	Text	Code	Text
A6	- 1 <i>3</i> , <i>C</i>		Solving problems related to SWOT analysis, decision making, team work decision.
			Working in a team group.
			Describe the main concepts of basics Web search methods.
A8	Communicate effectively – graphically, verbally and in writing – with a range of	LO4	Explain the main principle of Role of creativity in the analysis for different alternatives.
	audiences using contemporary tools.	LO5	Elucidate the main principal SWOT analysis for different alternatives.
		LO6	Clarify the main principal Cost – Benefit analysis and Risk analysis.
	Use creative, innovative and	LO7	Evaluating search results, choosing the appropriate search engine.
А9	flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations	LO8	Assess issues of Phases of problem solving (Understanding the problem and formulating it, Solution plan, Implementation plan, Evaluation, and Revision).
A10	Acquire and apply new knowledge and practice self, lifelong and other learning strategies.	LO9	Design the problems of role of cooperation and team – work in analyzing large engineering problems.

1 1 ()1()	form and explain the gained wledge orally.
-----------	--

Dir Instr	uctio		Indirect Instruction							Information Technology- Assisted Learni			-		
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
V		V				$\sqrt{}$	V			V				V	

Week	Scientific content of the course	Total	Expected number of the Learning Hours			
No.	(Course Topics)	Weekly Hours	Theoretical	Trair	ning	
	· · ·	Hours	teaching (lectures)	Tutorial	Practical Lab /	
	Basics Web search methods					
1	Phrase, title, domain, URL,	3	1	2	0	
	and link search.					
	How to formulate search					
2	engine queries using logical	3	1	2	0	
	connectives (e.g. AND, OR,				U	
	NOT).					
	Evaluating search results,					
3	choosing the appropriate	3	1	2	0	
	search engine.					
	Importance of evaluating the					
4	credibility of the different web	3	1	2	0	
	sites.					
	Framework for analyzing					
5	engineering problems	3	1	2	0	
	considering technical,		1			
	economic, environmental, and					

	ethical issues.								
6	Phases of problem solving (Understanding the problem and formulating it, Solution plan, Implementation plan, Evaluation, and Revision).	3	1	2	0				
7	Revisio	n and M	id Exam						
8	Role of creativity in the analysis for different alternatives.	3	1	2	0				
9	SWOT (strengths, Weaknesses, Opportunities, and Threats) analysis for different alternatives.	3	1	2	0				
10	Cost – Benefit analysis and Risk analysis.	3	1	2	0				
11	Role of cooperation and team – work in analyzing large engineering problems.	3	1	2	0				
12	Importance of finding the relevant data, information, and knowledge	3	1	2	0				
13	Revision	3	1	2	0				
14	Final Exam.								

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10
2	Exam 2 written (Semester work)	11	10	10
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	presentation skills	9,10	10	10
6	Assignments	11	10	10

6- Learning Resources and Supportive Facilities *

Learning	The main (essential) reference	HTI; Available Hard copy .
resources (books,	(must be written in full according to the	Available Presentation (handed to students' part by part)

scientific references, etc.) *	scientific documentation method)	
	Other References	1-G.R.Notess, Tesching Web Search Skills, information Today Inc., 2021. 2-D.Newnan, T.Eshenbach, and J.Lavelle, Engineering Economic Analysis, Oxford University Press, fourteenth edition, 2019. 3-Search skills for researchers "workshop", Engineering economic analysis by Donald G. Newnan et., al, 2018. 4-G.R.Notess, Tesching Web Search Skills, information Today Inc., 2021. 5-D.Newnan, T.Eshenbach, and J.Lavelle, Engineering Economic Analysis, Oxford University Press, fourteenth edition, 2019. 6-Murray, R. 2018: How to survive your viva. Maidenhead:Open University Press. 7-Rugg, G. & Petre, M. 2021: The unwritten rules of PhD research. Maidenhead:Open University Press. 8-Tinkler, P. & Jackson, C. 2021: The doctoral examination process: a handbook for students, examiners and supervisors. The Society for Research into Higher Education. Maidenhead:Open University Press.
	Electronic Sources (Links must be added)	http://www.scribd.com/anh_ch%C3%A2u_6/d/62390771- Change-Management-Best-Practice-Guide>
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Notebook and data show
facilities & equipment	Supplies	data show equipped lecture room
for teaching	Electronic	Microsoft power point
and	Programs	
learning *		

	Course Coordinator	Program Coordinator
--	--------------------	---------------------

Name	PROF. Ahmed Abd El-Gafar
Signature	- Det Marie

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Theory of machines (A)			
Course Code (according to the bylaw):	ENG 172			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>3</u>	<u>1</u>		<u>4</u>
Course Type:		Compu	lsory	
The level to which the course was introduced:	SENIOR 1			
Academic Program:	Mechatronics Engineering			
Institute:	Higher Technological Institute			
Name of Course Coordinator:	Dr. Mostafa Abd El-Galil Mohamed			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			
Course Specification Approval Date: 8/12/2025				

2. Course Overview (Brief summary of scientific content):

Kinematics of constrained rigid body. Planar &spatial transformation matrix. Transformation matrix between rigid bodies. Application of transformation matrices in linkages- Cams –Gears – Dynamics of linkages – Design of flywheel –Balancing of rigid rotors.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)			Course Learning Outcomes	
	A1,A3,A10,B1,B3	Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
	Identify, formulate, and solve complex engineering problems by	LO1	Identify the concepts of different mechanisms.	
A1	applying engineering fundamentals, basic science, and mathematics.		Solve problems of kinematics in different mechanisms.	
А3	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO3	Apply suitable methods for calculating velocity and acceleration in mechanisms.	
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	LO4	Explain the practical aspects of the theory of machines and their applications.	
B1	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations.	LO5	Analyze for mechanical engineering problems related to different Mechanisms.	
В3		LO6	Estimate the performance of mechatronic systems.	

Select conventional mechanical equipment according to the required performance.		Evaluate mechatronic systems for specific applications.
---	--	---

Dir Instr	uctio	Indirect Instruction						Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
V	1	V	V			1	V			1				V	V

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Trai	ning		
	-	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other	
1	General principles about mechanisms.	4	1	2	1	•	
2	General principles about mechanisms.	4	1	2	1	1	
3	Velocity of mechanisms using relative velocity method	4	1	2	1	1	
4	Velocity of mechanisms using relative velocity method	4	1	2	1	-	
5	Acceleration in mechanisms	4	1	2	1	•	
6	Simple and compound gear trains	4	1	2	1	-	

7	Revision and Mid Exam					
8	Epicyclic gear trains	4	1	2	1	-
9	Epicyclic gear trains	4	1	2	1	-
10	Cams	4	1	2	1	-
11	Cams	4	1	2	1	-
12	Cams	4	1	2	1	-
13	Balancing of rotating masses	4	1	2	1	-
14	Balancing of rotating masses	4	1	2	1	-
15,16	Final Exam.					

Experiment Topics: (If any)

Serial	Experiment
1	General principles about mechanisms.
2	Velocity of mechanisms using relative velocity method.
5	Acceleration in mechanisms.
6	Simple, compound and reverted gear trains.
7	Epicyclic gear train.
8	Cams.
9	Balancing of rotating masses.

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10 %
2	Exam 2 written (Semester work)	9	10	10 %
3	Midterm exam	8	20	20 %
4	Final Written Exam	15, 16	40	40 %
6	Exam3 (Oral)		10	10 %
7	Assignments / Project /Portfolio/ Logbook	12	10	10 %

6- Learning Resources and Supportive Facilities *

Learning resources (books, scientific	The main (essential) reference (must be written in full according to the scientific documentation method)	Theory of machines and mechanisms ,Uicker Jr, John J., Gordon R. Pennock, and Joseph E. Shigley. Cambridge University Press, 2023.
	Other References	The kinematics of machinery: outlines of a theory of machines.,Reuleaux, Franz. Courier Corporation, 2019.
references, etc.) *	Electronic Sources (Links must be added)	Course notes are available to the students on the copy center of the Institute and Microsoft teams.
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Data- show and laptop.
facilities & equipment	Supplies	White board
for	Electronic Programs	
teaching	Skill Labs/ Simulators	
and	Virtual Labs	
learning *	Other (to be mentioned)	

	Course Coordinator	Program Coordinator
Name	Dr. Mostafa Abd El-Galil Mohamed	Dr. Ahmed Abdalbadia
Signature	De	Paraullies

المعهد التكنولوجي العالى - مدينة العاشر من رمضان

قسم / العلوم الأساسية

توصيف مقرر

كود المقرر: 101 HUM

إسم المقرر: مقدمة في تاريخ الحضارات

1- معلومات أساسية:

ي الفرقة/ المستوي الأول			لدراسية / دراسي الذي 4 المقرر	المستوى اا		إختياري	نوع المقرر			
	2		عدد الساعات المعتمدة		أكتوبر	202	26/2025	العام الأكاديمي الفصل الدراسي		
2	إجمالي	-	المعامل:	ı	التمارين:	2	المحاضرة:	ساعات الإتصال:		
	لا يوجد							المتطلب السابق:		
			NARS 2	018			المعايير الأكاديمية			
			201	6			تاريخ الموافقة على اللائحة			
			يد رضوان	أ.م.د.ول			منسق المقرر			
2025-7-26							تاريخ اعتماد توصيف المقرر			
		سم)	، من مجلس الق	نضر الاعتماد	~ (جهة مناقشة واعتماد توصيف المقرر			

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

يتناول المقرر: مفهوم الحضارة (الثقافة والحضارة – التاريخ والحضارة) – أصول الحضارة الإنسانية في العصور القديمة (البدايات الحضارية الأولى – الثقافة والحضارة في الشرق القديم، وفي الغرب القديم "اليونان والرومان") – الحضارة والثقافة في العصور الوسطي (المسيحية – الإقطاع – العرب – العصور الإسلامية) – الحضارة في العصور الحديثة (النهضة – الإصلاح الديني – تقدم العلوم – الفلسفة والأداب والفنون).

3- نواتج التعلم للمقرر:

اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر		فرجات البرنامج / المعايير الأكاديمية المتبناة حققها المقرر تبعا للمصفوفة في توصيف البرنامج)	
لد الانتهاء من المقرر سيكون الطالب قادرا على	is	(A2- A5- A7-A9)	
النص	الكود	النص	الكود
يشرح المعلومات والأحداث التي تتعلق بمفهوم الحضارة وأصولها الإنسانية في العصور المختلفة.	LO 1		
يتعرف على أهم المؤثرات التي ساهمت في الحضارة والثقافة في العصور المتعاقبة .	LO 2		
يستنتج مدى التأثيروالتأثر بالأحداث التى مرت بها الحضارات ويبين الإنجازات والإخفاقات كل حقبة.	LO 3	تطوير وإجراء التجارب المعملية المناسبة أوالمحاكاة، وتحليل وتفسير وتقييم النتائج،	
يقيس تطور وتأثير وتأثر الثقافة والحضارة في العصور المختلفة .	LO 4	واستخدام التحليلات الإحصائية والحكم الهندسي الموضوعي لاستخلاص النتائج	A 2
يستخدم المنهج التاريخي لتناول الأحداث الحضارية الهامة في كل عصر و مصادر تلك الفترة.	LO 5	الموسوع ي و المسارس السماع	
يستقرئ الربط بين تطور الأحداث و الملابسات الحضارية التي تتناول تلك العصور ومصادرها.	LO 6		
يستخدم تكنولوجيا المعلومات بما يخدم الممارسة المهنية.	LO 7	ممارسة تقنيات البحث وأساليب التحقيق كجزء لا يتجزأ من التعلم.	A 5
يظهر مهارات إدارة الوقت بكفاءة.	LO 8	, - ,,	
تعزيز العديد من السلوكيات والمهارات داخل وخارج نطاق العمل بحيث يعمل ضمن فريق.	LO 9	العمل بكفاءة كفرد وعضو في فرق متعددة التخصصات ومتعدد الثقافات	A 7
القدرة علي قيادة المهنين والعمل كفريق لانجاز المهام العملية.	LO10	إستخدام التفكير الإبداعي والمبتكر والمرن واكتساب مهارات ريادة الأعمال والقيادة لتوقع المواقف الجديدة والاستجابة لها.	A 9
توخي السلوك الطيب والاقتداء بالقدوة الحسنة.	LO10	الموالف الجديدة والإستجاب لها.	

4- طرق التعليم والتعلم للمقرر:

يس اشر	التدر المبا		تراتيجيات التعلم بمساعدة التعلم بعدد التعلم بمساعدة التعلم بعدد التعلم التعلم بعدد التعلم بعدد التعلم التعلم بعدد التعلم التع												
المحاضرات	التمارين العملية والتجارب	العصف الذهنى	التطم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير /الأبحاث	الحوار والمناقشة	التدريب الميداني	الزيارات الميدانية	التطم الذاتى	التعلم بالإكتشاف	برامج المحاكاة أو النمذجة	المعامل الإفتراضية	التعلم الالكتروني	الذكاء الإصطناعي في التعليم
		1		V	V	1	1			1	V			V	1

الجدول الدراسى للمقرر:

	لمتوقعة	عات التعلم ا	عدد ساء	إجمالي عدد	المحتوى العلمي للمقرر	:
نواتج التعلم	يب	تدر	تدریس	ألساعات	(موضوعات المقرر)	ر <u>قم</u> الاسبوع الدرا
التي يحققها المقرر	عملي	تمارين	نظري	الأسبوعية		الدراسي
LO 1	0	0	2	2	تعريف بالمقرر الدراسي ومقدمة عامه.	1
LO 2	0	0	2	2	مفهومي الحضارة والتاريخ والعلاقة بينهما	2
LO 3	0	0	2	2	مفهوم الحضارة والتاريخ والعلاقة بينهما .	3
LO4	0	0	2	2	أصول الحضارة الإنسانية في العصور القديمة.	4
LO 4	0	0	2	2	الحضارة الإنسانية حيث الثقافة والحضارة في الشرق القديم.	5
LO 5	0 0		2	2	أصول الحضارة الإنسانية فى العصور القديمة،من حيث الثقافة و الحضارة فى الغرب القديم، لاسيما عند اليونان والرومان.	6
		الدراسي	ف الفصل	امتحان منتص	مراجعة و	7
LO 6	0	0	2	2	دور الحركة الوطنية في التصدي للاحتلال. (1)	8
LO 6	0	0	2	2	دور الحركة الوطنية في التصدي للاحتلال. (2)	9
LO 7	0	0	2	2	المظاهرات والثورات المناهضة للاحتلال وخاصة ثورة 1919 ونتائجها.	10
LO 8	0	0	2	2	نذر الحرب العالمية الثانية ومعاهدة 1936 والعدوان الثلاثي.	11
LO 9	0	0	2	2	الأحداث التي مهدت لثورة 23 يوليو 1952.	12

Page 3 of 5

LO 10	0	0	2	2	تحليل أهداف ثورة 23 يوليو 1952.	13			
LO 1	0	0	2	2	مراجعة عامة	14			
1 اختبارات الفصل الدراسي النهائية									

حرق تقييم الطلاب:

النسبة المئوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	م
%10	10	5	امتحان 1 تحريري (أعمال سنة)	1
%10	10	9	امتحان 2 تحريري (أعمال سنة)	2
% 20	20	7	امتحان منتصف الفصل الدراسي	3
% 40	40	14	امتحان نهائي تحريري	4
		لا يوجد	امتحان نهائي عملي	5
%10	10	11	امتحان نهائي شفهي	6
%10	10	8	تكليفات / مشروع / ملف الإنجاز /كتيب الانشطة	7
		لا يوجد	تدریب میدانی	8
		لا يوجد	أخرى (تذكر)	9

-6

7- مصادر التعلم والتسهيلات المادية:

خالد الشربيني ، مرفت ذكي: مقدمة في تاريخ الحضارات، مذكرة للمعهد	المرجع الأساسي للمقرر	
التكنولوجي العالي بالعاشر من رمضان، 2019		
1- أحمد عبد الرازق، الحضارة الإسلامية في العصور الوسطى،		
القاهرة، 2004.		
2- بدر نبيل ملحم: تاريخ الحضارات القديمة، دار الإعصار العلمي		
للنشر والتوزيع، 2015.	المراجع الأخرى	
3- رالف لينتون ، شجرة الحضارة ، ترجمة أحمد فخرى ، (3	23 - 6.3	مصادر التعلم
أجزاء) ،المركز القومي للترجمة 2010		(الكتب والمراجع
 4- رمسيس رياض، جورج صليب: الحضارات القديمة، مصر والشرق. وكالة الصحافة العربية، 2020 		العلمية وغيرها)
		*
1- https://ar.wikipedia.org/wiki	*	
2- http://www.du.edu.eg/	المصادر الالكترونية	
	(لابد من إضافة الروابط)	
3- https://www.youtube.com/		
https://www.ekb.eg/ar/home	المنصة التعليمية	
https://www.eko.eg/ai/nome	(لابد من إضافة الرابط)	
(داتا شو) وجهاز كمبيوتر محمول.	الأجهزة	
قاعة محاضرات مجهزة	المستلزمات	التجهيزات
	البرامج الالكترونية	التعليمية
	معامل المهارات/ المحاكيات	المساندة للتعليم
	المعامل الافتراضية	والتعلم *
	أخرى (تذكر)	

منسق البرنامج	منسق المقرر	
أ.د.أحمد عبد الغفار	أ.م.د.وليد رضوان	الإسم
- Liether)	وليرجنوام	التوقيع

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Field Training 2					
Course Code (according to the bylaw):	FTR 161					
Department/s that participated in the teaching:	Mechanical Engineering					
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total		
(according to the bylaw)		<u>18</u>		<u>18</u>		
Course Type:	Compulsory					
The level to which the course was introduced:	JUNIOR					
Academic Program:	Mechatronics Engineering					
Institute:	Highe	r Technolo	gical Inst	itute		
Name of Course Coordinator:	Assoc. Pro	of. Dr. Mon	a A. Youn	is		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department					
Course Specification Approval Date:		8/12/2	025			

2. Course Overview (Brief summary of scientific content):

Students should spend their training where they describe the processes they joined for training. Students should demonstrate the professional and practical skills they acquired during discussion with examination committee.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	Program Outcomes (ARS) ding to the matrix in the program specs)		Course Learning Outcomes
	A4, A7, A8, A10, D1, B4	Upon	completion of the course, the student will be able to:
Code	Text	Code	Text
A5	Practice research techniques and methods of investigation as an inherent part of learning.	LO1.	Write a technical report for the field training.
A7	Function efficiently as an individual and as a member of multi-disciplinary and multi-cultural teams.	LO2.	Develop new skills and obtaining knowledge to handle unfamiliar tasks more effectively in the future.
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools	LO3.	Integrate academic knowledge with practical experience gained during training.
A9	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO4.	Recognize the value of work, time, and teamwork, and professional attitudes revealing.
В4	Adopt suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and maintain mechanical equipment and systems	LO5.	Identify the tools required for different mechatronics components examination.
D1	Integrate a wide range of analytical tools, techniques, equipment, and software pacakage to design and develop mechatronics systems	LO5.	Apply national and international standards and codes in engineering practice.

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Informa Indirect Instruction Assisted Le							ology	ology-					
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V				$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	V	√				

Course Schedule:

	Scientific content of the course	Total	Expected Lear	LOs		
Week No.	(Course Topics)	Weekly	Theoretical	Tra	ining	covered by
		Hours	teaching (lectures)	Tutorial	Practical /Lab	course
	Train on the overall mechanical process Train on reading overall					
	flowsheet of the process Train on reading overall flowsheet of the process					
As	Midterm Report and Oral Exam	18				
scheduled	Carry out research using granted internet sites for references related to student's 2 training process					
	Write technical report					
		Final	Exam.			

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Attendance		10	10%
2	End of term Oral exam		30	30%
3	Midterm Report (Term Work)	As scheduled	20	20 %
4	Final Report (written)	AS scheduled	20	20 %
5	Follow up		20	20 %

6- Learning Resources and Supportive Facilities *

Learning resources (books, scientific references, etc.) *	The main (essential) reference (must be written in full according to the scientific documentation method)	Depend on the case/ technical writing booking
	Other References	Hand out to students one by one
	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	NON
facilities & equipment	Supplies	NON
for	Electronic Programs	NON
teaching	Skill Labs/ Simulators	NON
and	Virtual Labs	NON
learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Assoc. Mona A. Younis	Dr. Ahmed Abdelbadea
Signature	MONA A. YOUNIS	Paraulling

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Computer Graphics for Mechatronics			
Course Code (according to the bylaw):	MTE 117			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)		<u>3</u>		<u>3</u>
Course Type:	Compulsory			
The level to which the course was introduced:		SOPHO	MORE	
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	DR.AHMEI	D SHABAN	<u>l</u>	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The divis	ion council m	inute of depa	artment
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Main features of the computer graphics software used such as, menus, drawing area ,function keys File (open, new, save, editing.....), Drawing tools (line, pline, polygen, arc, circle, splines, rectangle,.....), Modifying menu (erase, move, Copy, mirror, break,....), format exchange(import, export), file output (printing, plotting), surface and solid modeling in 3D, dimensions and inquiry.

Drawing exercises and assignments, Engineering drawing A&B problems but using computer graphics – Small course work project related to Mechatronics.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	rogram Outcomes (ARS) ding to the matrix in the program specs)	Course Learning Outcomes			
	A5, A6, A7, A8, B2, D1		empletion of the course, the student will be able to:		
Code	Text	Code	Text		
A 5	Practice research techniques and methods of investigation as an inherent part of learning.	LO1	Investigate CAD software features to create and refine engineering drawings through iterative exercises.		
A 6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO2	Plan and mini design project monitoring in a CAD environment, considering cross-disciplinary design constraints.		
A7	Function efficiently as an individual and as a member of multi-disciplinary and multi- cultural teams.	LO3	Collaborate effectively in diverse teams for CAD-based assignments and design tasks finalizing		
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO4	Use contemporary graphics software to smoothness communication engineering designs clearly through 2D/3D visuals and documentation.		
B2	Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field	LO5	Design mechanical components and systems using advanced CAD tools and industry-standard drawing practices.		
D1	Integrate a wide range of analytical tools, techniques, equipment, and software pacakage to design and develop mechatronics systems	LO6	Utilize CAD platforms for design, simulation, and modeling components for integration into mechatronic systems.		

4. Course Teaching and Learning Methods:

Dir Instr	uctio		Indirect Instruction				r	Гесhn	nation ology Learn	-					
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V	V	V	V	V	V					V	V		

Course Schedule:

Week	Scientific content of the course	Total	Expected	J Hours		
No.	(Course Topics)	Weekly	Theoretical	Trai	ning	
170.		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
1	Introduction to CAD software interface, menus, file operations	3	0	0	3	-
2	Drawing tools: line, arc, polyline, spline, circle, rectangle	3	0	0	3	-
3	Use sketch orders with Extrude boss & Revolved boss	3	0	0	3	-
4	Sketch orders with Extruded cut & Revolved cut	3	0	0	3	-
5	Sketch orders with mirror – pattern – rib orders	3	0	0	3	-
6	External & Internal threads orders	3	0	0	3	-
7	R	evision a	and Mid Exa	m		
8	Swept & Loft orders	3	0	0	3	-

Page 3 of 5

9	Surface and solid modeling in 3D	3	0	0	3	-
10	. Modifying tools: move, copy, mirror, break, trim	3	0	0	3	-
11	format exchange	3	0	0	3	-
12	file output (printing ,plotting)	3	0	0	3	-
13	Small course work project development and documentation related to Mechatronics.	3	0	0	3	-
14	Final project presentation.	3	0	0	3	-
15,16	Final Exam.					

Experiment Topics: (If any)

Serial	Experiment
1	CAD Interface Exploration & Annotation
2	2D Shape Drawing and Modification
3	Dimensioning and Inquiry Commands
4	File Conversion and Output
5	3D Modeling – Mechanical Component
6	Investigation – Reverse Engineering Sketch to CAD
7	Team Drafting Project Plan

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	5	5%
2	Exam 2 written (Semester work)	10	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %

7	Assignments / Project /Portfolio/ Logbook	1-14	25	25%	1
---	---	------	----	-----	---

<u>6-</u> Learning Resources and Supportive Facilities *

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	Engineering Graphics with AutoCAD 2023 Author: James D. Bethune
scientific references,	Other References	
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Laptop
facilities & equipment	Supplies	
for	Electronic Programs	AutoCAD
teaching	Skill Labs/ Simulators	non
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr. Ahmed Shabban	Dr. Ahmed abd el badii
Signature	£),=	Paraullies

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Mathematics 3				
Course Code (according to the bylaw): MTH 101					
Department/s that participated in the teaching:	BASIC SCIENCES				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	2	<u>2</u>		4	
Course Type:	Compulsory				
The level to which the course was introduced:		SOPHOMORE			
Academic Program:	ALL ENGINEERING PROGRAMS				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr/ Mahmoud Abu Zeid				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	7/26/2025				

2. Course Overview (Brief summary of scientific content):

Cartesian – Cylindrical – Spherical Coordinates – Multi integral (Double integral – Double integral in polar coordinates – Triple integral – Transformation between coordinates - Triple integral in cylindrical and spherical coordinates) – Position vector – The dot product – Cross product and its applications – Infinite integrals in vector functions – Derivative of vector function – Gradient fields – Conservative vector field – Divergence and Curl of vector field – Line integral – Green theorem in the plane – Surface integral – Flux of vector field – Gauss divergence theorem – Stokes's theorem.

3. Course Learning Outcomes CLOs:

 $Matrix\ of\ course\ learning\ outcomes\ CLOs\ with\ program\ outcomes\ Pos\ (NARS/ARS).$

Program Outcomes (NARS/ARS) (according to the matrix in the program specs)		Course Learning Outcomes		
(A1, A2, A3, A10)		Upon con	npletion of the course, the student will be able to:	
Code	Text	Code	Text	
		LO1	Define the main items of the vectors, lines and planes in space.	
A1	Identify, formulate, and solve complex engineering problems by applying	LO2	Describe the main concepts of vectors and integral operations.	
Α.	engineering fundamentals, basic science, and mathematics.	LO3	Explain coordinate systems and the principals of Jacobian transformation and double and triple integrations and surfaces in space.	
	Develop and conduct appropriate and/or simulation, analyze and	LO4	Analyze the Green, Gauss, and Stokes theorems to evaluate the applications.	
A2	interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO5	Implement the skills of vectors to estimate some mathematical modeling.	
	Apply engineering design processes to produce cost-effective solutions that	LO6	Analyze the life problem to create the mathematical problem.	
А3	meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.		Classify the problems according to the suitable integral's method (line integral, surface integral and volume integral).	
		LO8	Describe and contrast between different lines and planes with sketching solids and planes	
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.		Evaluate and assess the suitable method of the double and triple integrals in cylindrical and spherical coordinates.	
		LO10	Manage time and apply the skills of Gradient field, divergence and curl of vector field.	

4. Course Teaching and Learning Methods:

Dire Instru			Indirect Instruction					ŗ	Inforn Fechn sisted	ology	-				
Lectures	Tutorial/Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
$\sqrt{}$	√	V			$\sqrt{}$	$\sqrt{}$	V			√					

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Trai	ining		
1,00	(comise repres)	Hours	teaching (lectures)	Tutorial	/ Practical Lab		
1	Vectors (The dot product- cross product- triple product)	4	2	2	0		
2	The lines in the space	4	2	2	0		
3	The plane in the space	4	2	2	0		
4	Surfaces in the space	4	2	2	0		
5	Coordinates in different systems	4	2	2	0		
6	Multiple integrals (double and triple integral)	4	2	2	0		
7	Revisi	on and M	Iid Exam				
8	Triple integral in cylindrical and spherical coordinates	4	2	2	0		
9	Gradient field, divergence and curl of vector field	4	2	2	0		
10	Line integral of scalar field	4	2	2	0		
11	Line integral of vector field	4	2	2	0		

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1written (Semester work)	4,5	10	10%
2	Exam 2 written (Semester work)	10,11	10	10%
3	Midterm exam	7	20	20%
4	Final Written Exam	15, 16	40	40 %
5	Final Practical/Clinical/ Exam		0	
6	Final Oral Exam		0	
7	Assignments / Project /Portfolio/ Logbook	8,9	20	20%

6- Learning Resources and Supportive Facilities *

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	1- Erwin Kreyszig, Advanced Engineering Mathematics, Tenth Edition, JOHN WILEY & SONS, INC.
resources (books, scientific references, etc.) *	Other References	 Erwin Kreyszig, Advanced Engineering Mathematics Advanced Calculus Theory and Practice, John Petrovic 2020 Advanced Calculus Fundamentals of Mathematics, Carlos Polanco Advanced Engineering Mathematics by H. K. Dass. Advanced Engineering Mathematics by K. A. Stroud and J. Booth, Fourth Ddition. Calculus III Jerald Marsden and Alan Weinstein, Springer-Verlag 1985, Second Ddition.

	Electronic Sources (Links must be added)	 https://math.fandom.com/wiki/Hypermathematics https://github.com/AlexCharlton/hypermath https://www.britannica.com/science/mathematics https://www.khanacademy.org/math https://animated-mathematics.net/
	Learning Platforms (Links must be added)	EKB- Microsoft office
Supportive	Devices/Instruments	
facilities &	Supplies	
equipment	Electronic Programs	MATLAB
for	Skill Labs/	
teaching	Simulators	
and	Virtual Labs	
learning *	Other (to be	
	mentioned)	

	Course Coordinator	Program Coordinator
Name	Dr Mahmoud Abu Zeid	Prof. Ahmed Abd El-Gafar
Signature	Mahmoud Abu Zeid	Julie)

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Numerical Method				
Course Code (according to the bylaw):	MTH 103				
Department/s that participated in the teaching:	BASIC SCIENCES				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>2</u>	<u>2</u>		<u>4</u>	
Course Type:	Compu	lsory			
The level to which the course was introduced:	SOPHOMORE				
Academic Program:	ALL ENGI	NEERING	PROGRAM	<u>//S</u>	
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Safinaz Ahmed				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	7/26/2025				

2. Course Overview (Brief summary of scientific content):

Solutions of nonlinear equations in one Variable(The Bisection Algorithm, Fixed point Iteration - The Newton- Raphson Method- Secant method- Error Analysis for Iterative Methods - Interpolation and polynomial Approximation (The Taylor Polynomials, Lagrange Polynomials) - Divided Differences-curve fitting - Numerical Differentiation - Numerical Integration(Romberg Integration, trapezoidal rule, Simpson rule) - Initial value problems for Ordinary Differential Equations(Elementary Theory of Initial Value problems, Euler's Method) - Improved Euler method, Rung-Kutta method- Numerical solutions of partial differential equation

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	gram Outcomes (NARS/ARS) ng to the matrix in the program specs)		Course Learning Outcomes
A1, A5	, A10	Upon com	pletion of the course, the student will be able to:
Code	Text	Code	Text
	Apply engineering design processes	LO1	Define Mathematical Preliminaries.
	to produce cost-effective solutions that meet specified needs with consideration for global, cultural,	LO2	Describe the nonlinear equation in one variable.
A1	social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of	LO3	Apply the definition of interpolation data points to solve problems.
	sustainable design and development	LO4	Explain the curve fitting
	Practice research techniques and methods of investigation as an inherent part of learning	LO5	Calculate mathematical results using numerical integration and differentiation methods.
A5		LO6	Justify the initial value problems for ordinary and partial differential equations
		LO7	Solve problems of ordinary and partial differential equations
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO8	Interpret graphically the initial value problems for ordinary and partial differential equations.
	5.5.4.5.B.20.	LO9	Model various mathematical problems numerically, including interpolation, integration, and differential equations.
		LO10	Work under stress as leader of teamwork.

4. Course Teaching and Learning Methods:

Dir Instru			Indirect Instruction								Information Technology- Assisted Learning				
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
	V			V		V				V				V	

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly Hours	Theoretical	Tra	ining		
		Hours	teaching (lectures)	Tutorial	Lab / Practical		
	Mathematical Preliminaries						
1	(Review of calculus, Round off	4	2	2	0		
	Errors and computer Arithmetic						
2	Taylor series	4	2	2	0		
	Solutions of nonlinear equations						
3	in one Variable (The Bisection	4	2	2	0		
	Algorithm						
4	The Newton- Raphson Method,	4	2	2	0		
4	False method.	4	2	2	U		
	Interpolation and polynomial						
5	Approximation (The Newton	4	2	2	0		
	forward, Lagrange Polynomials, Newton Divided Differences)						
	Fitting Curve (Straight line,						
6	Exponential function)	4	2	2	0		
	Exponential function)						
7	Revis	ion and M	Iid Exam				

8	Fitting the rational function, and spiel function	4	2	2	0
9	Numerical Integration (trapezoidal rule, Simpson rule	4	2	2	0
10	Numerical Differentiation.	4	2	2	0
11	Initial value problems for Ordinary Differential Equations	4	2	2	0
12	(Elementary Theory of Initial Value problems, Euler's Method)	4	2	2	0
13	Improved Euler method, Rung-Kutta method.	4	2	2	0
14	the initial value problems for partial differential equations	4	2	2	0
15,16		Final Exa	m.		

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	3	10	10%
2	Exam 2 written (Semester work)	12	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments	13,14	20	20%

6- Learning Resources and Supportive Facilities *

Learning resources (books, scientific references, etc.) *	The main (essential) reference (must be written in full according to the scientific documentation method)	 Erwin Kreyszig, Advanced Engineering Mathematics, Tenth Edition, NewYork: Wiley, 2011. Steven C. Chapra, Raymond, P. Canal, Numerical Methods for Engineers, 4 Th, McGraw-Hill Education, New York, 2015. James F. Epperson, An Introduction to Numerical Methods for Engineers and Scientists, Thrid Hill Education, New York, 2021 Mikki Jaramillo, Numerical Methods for Differential Equations
	Electronic Sources	 https://math.fandom.com/wiki/Hypermathematics https://math.fandom.com/wiki/Hypermathematics https://math.fandom.com/wiki/Hypermathematics

(Links must be added)	 https://www.britannica.com/science/mathematics https://www.khanacademy.org/math https://animated-mathematics.net/
Learning Platforms (Links must be added)	EKB - Microsoft office

	Course Coordinator	Program Coordinator
Name	Dr. Safinaz Ahmed	Prof. Ahmed Abd El-Gafar
Signature	Safinaz	- Liether)

المعهد التكنولوجي العالى - بالعاشر من رمضان

توصیف مقرر دراسی

1- معلومات أساسية:

	ضية 2	تربية رياد		اسم المقرر: (تبعا لما ورد باللائحة)
	PH	كود المقرر: (تبعا لما ورد باللائحة)		
	ىاسية	العلوم الاس		القسم/الأقسام العلمية التي شاركت في التدريس:
نظري	عملي	اخري (تحدد)	إجمالي	إجمالي عدد الساعات المعتمدة للمقرر:
2	1		1	(تبعا لما ورد باللائحة)
	ي	اجبار:		نوع المقرر:
	SOPH	OMORE		المستوى الدراسي الذي قدم فيه المقرر:
	بندسية	البرامج اله		البرنامج الأكاديمي:
	جي العالي	المعهد التكنولو		المعهد:
	علي	د عصماء		اسم منسق المقرر:
	مي للبرنامج	جهة مناقشة واعتماد تقرير المقرر:		
	7/26	5/2025		تاريخ اعتماد تقرير المقرر:

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

المقرر يحتوى علي قوانين الحركة. الميكانيكا الحيوية: انواع الروافع، قواعد الدفع، الاجهاد العضلى، التربية البدنية والمجهود البدني، نظم إنتاج الطاقة والمشروبات الرياضية، والظروف البيئية وتأثيرها على الأنشطة الرياضية.

3- نواتج التعلم للمقرر:

اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر	فرجات البرنامج / المعايير الأكاديمية المتبناة حققها المقرر تبعا للمصفوفة في توصيف البرنامج)		
ند الانتهاء من المقرر سيكون الطالب قادرا على	A2_A4_A5_A7_A8		
النص	الكود	النص	الكود
توظيف معارف ومهارات التربية الرياضية للتعامل مع إصابات	LO1	تحديد وصياغة وحل المشكلات الهندسية المعقدة من خلال تطبيق الاسس الهندسية والرياضيات والعلوم	4.2
اهم الاصابات التي يتعرض لها اللاعبون والافراد العاديين واهم طرق العلاج	LO2	االاساسية	A2
التعرف على اهم اسباب الانحرافات القوامية وتجنب حدوثها	LO3	لاستفادة من التقنيات المعاصرة، والممارسات والمعايير، وإرشادات الجودة، ومتطلبات الصحة	
شرح مفاهيم التربية والهندسة الرياضية ونظرياتها	LO4	والسلامة والقصايا البيئية ومبادئ إدارة المخاطر	A4
تنمية المعارف والمعلومات حول حقيقة ونطاق الاصابات الرياضية	LO5		
تنمية المعارف والمعلومات حول حقيقة ونطاق الإصابات الرياضية	LO6	ممارسة تقتيات البحث وأساليب التحقيق كجزءلا	A =
التعرف على مبادئ الاسعافات الأولية والوسائل المستخدمة إتجاه الإصابات الرياضية.	LO7	يتجزأ من التعلم.	A5
وتنمية المعارف والمعلومات حول الاصابات الرياضية التى يتعرض لها الرياضين داخل الملاعب وخارجها .	LO8	لعمل بكفاءة كفرد وعضو في فرق متعددة التقافات التخصصات ومتعدد الثقافات	A7
توظيف المعارف والمهارات التى حصل عليها فى مجال العمل	LO9	التواصل بفعالية بيانياً وشفاهه وكتابة مع مجموعات من الجماهير باستخدام الادوات العصرية.	A8

4 طرق التعليم والتعلم للمقرر:

يس شر	التدر المبا	متراتيجيات التعلم بمساعدة التدريس الغير مباشر تكنولوجيا المعلومات									استراتي				
المحاضرات	التمارين العملية والتجارب	العصف الذهنى	التطم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير الأبحاث	الحوار والمناقشة	التدريب الميداني	الزيارات الميدانية	التعلم الذاتى	التعلم بالإكتشاف	برامج المحاكاة أو التمذجة	المعامل الافتراضية	التعلم الالكترونى	الذكاء الإصطناعي في التعليم
		V				V	V			1				1	

الجدول الدراسي للمقرر:

لمتوقعة	عات التعلم ا	عدد ساء	إجمالي عدد	المحتوى العلمي للمقرر	
	تدر	تدریس نظري	إجما <i>ي عدد</i> الساعات الأسبوعية	(موضوعات المقرر)	رقم الاسبوع الدراسي
عملي	تمارین	•		جسم الانسان (عظمي _عضلي _	
1	0	1	2	جسم المشان (عصمی – عصبی – مفصلی – عصبی) وما هو تأثیر ممارسات المشارکة الریاضیة + نشاط ریاضی	1
1	0	1	2	تعريف الاصابة- اسبابها ــاعراضها ــ الاسعافات الاولية ومبادئها+ نشاط رياضي	2
1	0	1	2	اهداف واعراض الاسعافات الاولية والوسائل المستخدمه في الاسعافات الاولية + نشاط رياضي	3
1	0	1	2	اصابات الجلا (الجروح – الحروق – كدمات الجلا) + نشاط رياضي	4
1	0	1	2	اصابات العضلات (الاجهاد العضلى – التقلص العضلى – التمزق العضلى) + نشاط رياضي	5
1	0	1	2	مراجعه عامه + تدریب علی التقیم العملی	6
		دراسي	سف القصل الا	مراجعة وامتحان منتص	7
1	0	1	2	مراجعه عامه + مناقشه ابحاث	8
1	0	1	2	اصابات الجهاز العصبى (الاغماء- الصدمه – كدمات الاعصاب –النزيف) + تقيم الجزءالعملى	9
1	0	1	2	ماهى القوام – تعريفه – مبادئ المحافظة على القوام + مناقشه الابحاث و التقارير	10
1	0	1	2	الانحرافات القوامية (انواعها ـ اسبابها	11
1	0	1	2	مراجعه عامه	12
		عملي	اسي النهائية	إختبارات الفصل الدرأ	13

5- طرق تقييم الطلاب:

النسبة المئوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	م
%20	20	9_8	بحث تقيمي للعملي	1
% 20	20	7	امتحان منتصف الفصل الدراسي	2
% 30	30	14	امتحان نهائي تحريري	3
%30	30	13	امتحان نهائي عملي	4

6- مصادر التعلم والتسهيلات المادية:

مدخل في التربية الرياضية	المرجع الأساسي للمقرر (لابد من كتابة البيانات كاملة وفقا لطريقة توثيق علمي)	
ابو العلاعبد الفتاح: الرياضه و انقاص الوزن ، دار الفكر العربي 2023 العربي 1022 الهام شلبي: بانورما الصحه العامه للريا ضيين القاهرة 2022	المراجع الأخرى	مصادر التعلم (الكتب والمراجع العلمية وغيرها)
	المصادر الالكترونية (لابد من إضافة الروابط)	العصية و ح يرها) *
EKB - Microsoft office	المنصة التعليمية (لابد من إضافة الرابط)	
قاعة محاضرات مجهزة والجيم	1	التجهيزات
المكتبات المركزية والفرعية	2	التعليمية
الوسائل التعليمية (داتا شو (وجهاز كمبيوتر محمول.)	3	المساندة للتعليم
مّذكرة لتدريس المقرر وكشوف متابعة للطلاب	4	والتعلم *

منسق البرنامج	منسق المقرر	
ا.د/ أحمد عبد الغفار	د عصماء علي	الإسم
(كالمسالخفار	عصماء علي	التوقيع

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Modern Physics			
Course Code (according to the bylaw):	PHY 101			
Department/s that participated in the teaching:	BASIC SC	<u>IENCES</u>		
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>2</u>	<u>2</u>		<u>4</u>
Course Type:	Elective			
The level to which the course was introduced:	SOPHOMORE			
Academic Program:	ALL ENGINEERING PROGRAMS			
Institute:	Higher Technological Institute			
Name of Course Coordinator:	Asst. Pı	rof. Mohan	nad Abd El	-Aziz
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			
Course Specification Approval Date:	7/26/2025			

2. Course Overview (Brief summary of scientific content):

The modern Physics course is a fundamental course for diploma level students. After completion of this course, the students should have the knowledge and skills that enable them to recognize some of the light wave's phenomena e.g., interference and diffraction and enumerate the methods of polarization. In addition, they will utilize the fundamentals of photons theory of light to explain some of the quantized phenomena such as photoelectric effect and Compton effect. Also, they will employ the Bohr rules to solve and analyze the energy levels of hydrogen atom. Moreover, they study the basics of nuclear physics.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	Program Outcomes (NARS) ording to the matrix in the program specs)		Course Learning Outcomes
	A	Upon	completion of the course, the student will be able to:
Code	Text	Code	Text
		LO1	Enumerate the fundamental physical concepts and rules covered in the course.
	A1 Recognize, articulate, and resolve intricate engineering challenges through the application of engineering principles, fundamental sciences, and mathematics.	LO2	Formulate the physical laws that related to the syllabus course.
A1		LO3	Derive the fundamental principles of contemporary and quantum physics pertinent to this course.
			Discuss the course's issues.
A2	Develop and execute pertinent experiments and/or simulations, appraise and review outcomes, and provide statistical analyses along with objective engineering judgment to assess the findings.	LO5	Utilize simulation software to effectively demonstrate various experiments virtually.
A5	Employ research strategies and methodologies, as well as investigative approaches, as an integral part of learning.	LO6	Write scientific reports based on the foundational concepts outlined in the course syllabus.
A7	Effectively collaborate with teams composed of individuals from diverse cultural backgrounds and academic disciplines.	LO7	Develop the capacity for collaborative teamwork
A8	Apply coeval tools to communicate with a diverse audience in writing, verbally, and graphically.	LO8	Convey the acquired knowledge verbally, in written form, and visually.
A10	Attain and implement novel knowledge while employing self-directed, lifelong, and alternative learning methodologies.	LO9	Acquire the capacity for autonomous learning in application engineering physics.

4. Course Teaching and Learning Methods:

	rect uction		Indirect Instruction							ŗ	Inforn Techn sisted	ology	-		
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
✓	✓	✓			✓	√	✓			✓			✓	1	1

Course Schedule:

Week	eek Scientific content of the course		Expected number of the Learning Hours			
No.	(Course Topics)	Weekly	Theoretical	Tra	nining	
	(CC2222 _ CP222)	Hours	teaching (lectures)	Tutorial	Lab / Practical	
1	Theories of light - energy of light waves.	4	2	2	0	
2	Light pressure- Interference- Young's experiment	4	2	2	0	
3	Interference of thin film— Newton's rings	4	2	2	0	
4	Michelson interferometer	4	2	2	0	
5	Diffraction — rectangle single, circular slit diffraction	4	2	2	0	
6	Diffraction from a double slit - diffraction grating	4	2	2	0	
7	Revision and Mid Exam					
8	Introduction of polarization- methods of polarization	4	2	2	0	

9	Photon and photoelectric effect-Compton effect- black body radiation	4	2	2	0
10	Atomic structure- Bohr's model of hydrogen atom	4	2	2	0
11	Spectrum of (H) & hydrogenic and mesic atom	4	2	2	0
12	The nuclear terminology-nuclear radii- binding energy	4	2	2	0
13	Nuclear models- nuclear energy level- the nuclear force	4	2	2	0
14	Radioactive decay – decay process- radioactive dating – radioactive dosimeter	4	2	2	0
15,16	Final Exam.				

5- Methods of students' assessment:

No.	Assessment Methods	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	2	10	10%
2	Exam 2 written (Semester work)	4	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	Assignments / Project /Portfolio/ Logbook	9	20	20%

6- Learning Resources and Supportive Facilities *

Learning resources (books, scientific	The main (essential) references	 D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, 12th ed. Wiley, 2022. Raymond A. Serway, Chris Vuille, J. Hughes. College Physics Global Edition, 11th ed. Cengage Learning, 2018.
references, etc.)	Other References	1- I. Lyublinskaya et al., College Physics for AP Courses OpenStax. XanEdu Publishing Inc, 2022.

		2- W. Sears Richards, Mark W. Zemansky, and Hung D. Young, University Physics, 6th edition, Addison – Wesley 2020
	Electronic Sources (Links must be added)	 http://hyperphysics.phy-astr.gsu.edu/hbase/index.html https://www.physicsclassroom.com/https://en.wikipedia.org/wiki/Physics https://physicsworld.com/
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive facilities &	Devices/Instruments	Notebook and data show equipped lecture room.
equipment for	Supplies	Whiteboard—whiteboard color pens—eraser
teaching and learning	Other	Scientific Videos

	Course Coordinator	Program Coordinator
Name	Ass. Prof. Mohamad Abd El- Aziz	Prof. Ahmed Abd El-Gafar
Signature		(المسالمفار

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	g to the bylaw): Computer Programming					
Course Code (according to the bylaw):	CSC 101					
Department/s that participated in the teaching:	Mechanical Engineering					
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total		
(according to the bylaw)	1	<u>3</u>		<u>4</u>		
Course Type:	Compulsory					
The level to which the course was introduced:	SOPHOMORE					
Academic Program:	Mechatronics Engineering					
Institute:	Higher Technological Institute					
Name of Course Coordinator:	Prof. Dr. AMAL NASSER					
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department					
Course Specification Approval Date: 8/12/2025						

2- Course Overview (Brief summary of scientific content):

Principles of designing a simple program - The basic ideas of uses of the computer in programming - The basic ideas of C++ language - How to write a complete program with high level language C++ - How to design, code,debug, and document program laboratory assignments - The syntax of writing any program by C++ language

1. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS).

	Program Outcomes (NARS) ing to the matrix in the program specs)	Course Learning Outcomes				
	A2,A 4,D1	Upon completion of the course, the student will be able to:				
Code	Text	Code	Text			
	Develop and conduct appropriate	LO1	Simulate and analyzing problems using flowchart			
A2	experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO2	Develop software experiments to solve problems			
4.0	Acquire and apply new knowledge; and practice	LO 3	Acquire new syntax and writing more complex computer expressions			
A9	self, lifelong and other learning strategies	LO 4	Apply new knowledge in thinking and solving problems			
	Integrate a wide range of analytical tools , techniques , equipment , and software pacakage to design and develop mechatronics systems	LO5	Apply C++ programming concepts, development tools, and debugging techniques to design, implement, and document computer programs that support the design and development of mechatronics systems			

2. Course Teaching and Learning Methods:

Dire Instru		Indirect Instruction					Information Technology- Assisted Learning								
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
<mark>√</mark>	<mark>√</mark>					√						<mark>√</mark>			

Course Schedule:

Week No.	Scientific content of the course	Total Weekly Hours	Expecte Lea	other		
	(Course Topics)		Theoretical teaching (lectures)	Trai Tutorial	ning / Practical Lab	o mer
1	Introduction to computer language, flowcharts. Some examples. What is a computer program	4	1	_	3	-
2	Some examples on flowcharts. Creating simple program that print a message with high level programming language. The Simple C++ Data Type.	4	1		3	-

3	Writing a simple code for some elementary examples to create a complete program that accept input(s) and result outputs(s).	4	1		3	-
4	Writing a complete program that can perform any simple mathematical operations. Writing a simple code for some elementary examples	4	1		3	-
5	Decisions: The if statement. The if – else statement. The select statement.	4	1		3	-
				T		
6	Loops: The for Next loop. The DO and Loop Until. The do while loop	4	1		3	-
7	1	Revision	and Mid E	xam		
8	Examples on loop and Decisions	Revision 4	and Mid E	xam	3	-
	Examples on loop and		and Mid E	xam	3	-

13	Example on the overall course especially on function and procedure Lab Exam	4	1	3	-
12	Methods: What do methods do? Calling a method. Some examples on methods	4	1	3	-
11	Methods: What do methods do? Calling a method. Some examples on methods.	4	1	3	-

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	2	10	10%
2	Exam 2 written (Semester work or quiz)	4	10	10%
3	Midterm exam	7	30	30 %
4	Final Written Exam	15	30	30 %
5	Final Practical/Clinical/ Exam	9	10	10%
7	Assignments	6	10	10%

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	Stroustrup, B. (2019). <i>The C++</i> programming language (4th ed.). Addison-Wesley
(books,	Other References	
references, etc.) *	Electronic Sources (Links must be added)	
etc.)	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive facilities & equipment for teaching and learning *	Devices/Instruments	 Personal computers or laptops with: Minimum 4 GB RAM, dual-core processor Operating system: Windows, Linux, or macOS Data show (projectors) and smartboards for instructor demonstrations External storage devices (USBs) for code backup and transfer Networked printers for assignments and reports
	Supplies	 Printed lab manuals and C++ programming guides Whiteboard markers and flowcharting sheets for algorithm planning

	 Lab logbooks or notebooks for manual recording of code outputs Backup power supplies (UPS) and power extension cables
Skill Labs/ Simulators	 Computer Programming Lab equipped with: Individual student terminals or workstations Real-time programming assignments and code execution practice Simulated environments for: Code tracing and logic building Algorithm visualization tools (e.g., c++ Tutor,)
Virtual Labs	Integrated Development Environments (IDEs): Code::Blocks Dev C++ Microsoft Visual Studio Eclipse CDT Compilers: GCC (GNU Compiler Collection) Clang Text Editors: Notepad++ Visual Studio Code Version Control: Git, GitHub

	Tools and performance profilers
Other (to be mentioned)	

	Course Coordinator	Program Coordinator
Name	Amal Nasser	Dr. Ahmed Abdalbadia
Signature	Amal Nasser	Paraullus

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Basics of Materials Science & Engineering				
Course Code (according to the bylaw):	ENG 116				
Department/s that participated in the teaching:	<u>Me</u>	chanical E	<u>ingineerin</u>	<u>a</u>	
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>4</u>			4	
Course Type:		Compu	lsory		
The level to which the course was introduced:		SOPHO	MORE		
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>		
Institute:	Highe	r Technolo	gical Inst	itute	
Name of Course Coordinator:	Assoc. Pro	of. Dr. Man	al Amin		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:		8/12/2	025		

2. Course Overview (Brief summary of scientific content):

Atomic structure of matter, X-ray diffraction, crystallography, solidification, crystalline imperfections, diffusion, theory of alloys, binary and ternary alloys, iron carbon diagram, TTT diagrams, heat treatments, deformation and strain hardening, mechanical properties of metals, physical properties of materials, corrosion and wear.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	Program Outcomes (ARS) ding to the matrix in the program specs)	Course Learning Outcomes			
	A1&A2&B1&B2	Upon com	pletion of the course, the student will be able to:		
Code	Text	Code	Text		
	Identify, formulate, and solve complex engineering	LO1	Select appropriate materials based on engineering requirements.		
A1	A1 problems by applying engineering fundamentals, basic science and mathematics.		Explain different types of bonding and describe the basic crystal structures in metallic materials.		
	Develop and conduction appropriate experimentation and/or simulation, analyzed and interpret data, assess		Develop and running experiments for identifying the structure of materials, alloys, and their phase transition behavior.		
A2	and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO4	Solve problems related to crystal structures, diffusion processes, and phase diagrams as applications of materials science.		
	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of:	LO5	Investigate conventional and advanced technologies for improving the mechanical properties of metals.		
B1	Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations.	LO6	Analyze diffusion processes, imperfections in solids, solidification, and phase diagrams of engineering materials, and relate them to basic properties and applications.		

B2	Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field	Identify different types of materials and evaluating their applications based on structure–properties relationships.
	mechanical engineering field.	

4. Course Teaching and Learning Methods:

Direct Instru n		Indi	Indirect Instruction						Information Technology- Assisted Learning						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V	V		V	V				1				V	V

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours					
No.	(Course Topics)	Weekly	Theoretical	Tra	ining			
	• /	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Introduction of Mechanical Properties of metals, physical properties of materials	4	1	2	1	-		
2	Interatomic Bonding	4	1	2	1	-		
3	Atomic structure (Atomic structure of matter).	4	1	2	1	-		

4	Atomic structure (Atomic structure of matter).	4	1	2	1	-			
5	Atomic structure (crystallography)	4	1	2	1	-			
6	Atomic structure (X-ray diffraction).	4	1	2	1	-			
7	I	Revision	and Mid Ex	kam					
8	Diffusion in engineering Materials.	4	1	2	1	-			
9	Solidification of metallic Materials	4	1	2	1	-			
10	Crystalline imperfections	4	1	2	1	-			
11	Diffusion in engineering Materials	4	1	2	1	-			
12	Phase Diagram (theory of alloys, binary and ternary alloys	4	1	2	1	-			
13	Iron carbon diagram, TTT diagrams, heat treatments, deformation and strain hardening)	4	1	2	1	-			
14	Corrosion and Wear	4	1	2	1	-			
15,16	Final Exam.								

Experiment Topics: (If any)

Serial	Experiment
1	Prepare and Examine Microstructures using Optical Microscopy
1	- To study solidification processes and crystalline imperfections.
	Heat Treatment of Metal Samples
2	- Including annealing, quenching, and tempering to understand phase transformations using the iron-
	carbon diagram and TTT curves.
2	Compare Microstructures Before and After Heat Treatment
3	- To observe changes in phases and properties due to thermal processes.

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment	Marks/	Percentage
NO.	Assessment Methods	Timing	Scores	of

		(Week Number)		total course Marks
1	Exam 1 written (Semester work)	6	10	10%
2	Exam 2 written (Semester work)	9	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	According	20	20 %
		to schedule		

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	Callister, William D. Materials Science and Engineering: An Introduction. John Wiley & Sons Australia, Ltd, 2021.		
resources (books, scientific	Other References	- L.Francisc: "Materials Processing", 2015.		
references, etc.) *	Other References	William F. Smith, "Principles of material science and engineering"; McGraw-Hil Third Edition, 1996		
	Learning Platforms (Links must be added)	EKB - Microsoft office		
Supportive	Devices/Instruments	Optical Microscope-Polishing device -		
facilities &	Devices/instruments	Heat treatment furnace-Wear device		
equipment	Supplies	NON		
for Electronic Programs		NON		
teaching	Skill Labs/ Simulators	NON		
and	Virtual Labs	NON		
learning *	Other (to be mentioned)	NON		

	Course Coordinator	Program Coordinator
Name	Assoc. Prof. Dr. Manal Amin	Dr. Ahmed Abd-ELbadei
Signature	- Ilia	Parsulling

Higher Technological Institute (HTI) - 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Engineering Mechanics (3)			
Course Code (according to the bylaw):	ENG 101			
Department/s that participated in the teaching:	Me	chanical E	ngineerin	<u>g</u>
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	4	<u>0</u>		<u>4</u>
Course Type:		Compu	lsory	
The level to which the course was introduced:		SOPHO	MORE	
Academic Program:	Mechatron	nics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Insti	itute
Name of Course Coordinator:		Dr. Gama	al Nada	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Kinematics of rigid bodies in plane motion: Translation motion, rotation about fixed axis and general plane motion - Geometrical properties of rigid body; center of gravity and mass moment of inertia - Kinetics of rigid body in translation, rotation and general plane motion (equation of motion based on Newton's second law, work, energy and momentum).

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)			Course Learning Outcomes
	(A1 & A3& B1)	Upon	completion of the course, the student will be able to:
Code	Text	Code	Text
	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	LO1	Identify the different types of plane motion of rigid bodies (translation, rotation or general plane motion)
		LO2	Formulate the equations of kinematics of rotation motion of rigid body.
A1		LO3	Solve problems of kinematics of general plane motion of rigid body.
		LO4	Identify the geometrical properties of rigid bodies.
		LO5	Formulate the equations of kinetics of plane motion of rigid body.
		LO6	Solve problems of kinetics of plane motion of rigid body (translation, rotation, or general).
A3	Apply engineering design processes to produce cost- effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO7	Relate between the motions of the bodies to obtaining the requirements for a certain dynamic design.

B1	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations.	LO8	Investigate the given system (mechanism) by applying the laws of solid mechanics, material properties and laws of dynamics.
----	--	-----	---

4. Course Teaching and Learning Methods:

Dire Instru		Indirect Instruction						Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
√	√	V			√	√	√			V					√

Course Schedule:

Week	Scientific content of the course	Total	Expecte Lea			
No.	(Course Topics)	Weekly	Theoretical	Trai	other	
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	
1	-Introduction to the dynamics of rigid body.- Kinematics of rotation of rigid body.	4	2	2		,
2	- Motion of a point on a rotating rigid body.	4	2	2		

	- Problems									
3	Problems, continuedKinematics of general plane motion of rigid body	4	2	2						
4	 Problems Kinematics of general plane motion of rigid body, rolling without slipping (or without sliding) 	4	2	2		-				
5	 Kinematics of general plane motion of rigid body, rolling with slipping or with sliding Problems 	4	2	2		-				
6	 Geometrical properties of rigid body: mass center of simple body Mass center of composite body 	4	2	2		-				
7	F	Revision	and Mid Ex	kam						
8	Mass moment of inertia for simple and composite bodyProblems	4	2	2	-	-				
9	- Kinetics of general plane motion of rigid body, General approach	4	2	2	ı	1				
10	Kinetics of translation of rigid bodyProblems	4	2	2	-	-				
11	Problems, continuedKinetics of rotation of rigid body, centroidal rotation	4	2	2	-	-				
12	 Problems Kinetics of rotation of rigid body, non-centroidal rotation 	4	2	2	-	-				
13	ProblemsKinetics of general plane motion of rigid body	4	2	2	-	-				
14	- Problems - Revision	4	2	2	-	-				
15,16	Final Exam.									

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	5	10	10 %
2	Midterm exam	7	20	20 %
3	Exam 2 written (Semester work or quiz)	10	10	10 %
4	Final Written Exam	15, 16	40	40 %
5	Assignments / Sheets	Through	10	10 %
		Semester		
6	In-Class questions	Through	10	10 %
		Semester		

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	R. C. Hibbler "Engineering Mechanics: Dynamics", 15th Edition, Published by Pearson, 2021.
resources (books, scientific references, etc.) *	Other References	-Andrew Pytel and <u>Jaan Kitselas</u> "Engineering Mechanics: Dynamics", 4 th Edition, Published by CL Engineering, 2016 -Course Notes available as softcopy on Microsoft teams
Supportive	Devices/Instruments	Data-show and laptop.
facilities & equipment	Supplies	White board
for	Electronic Programs	Microsoft teams
teaching and learning *	Other (to be mentioned)	Library

	Course Coordinator	Program Coordinator
Name	Dr. Gamal Nada	Dr. Ahmed Abdalbadia
Signature	Dr. Gon Woh	Paraulling

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Circuits theory				
Course Code (according to the bylaw):	MTE 111				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	3	1		4	
Course Type:	Compulsory				
The level to which the course was introduced:	SOPHOMORE				
Academic Program:	Mechatror	nics Engine	<u>eering</u>		
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr.	Ahmed Al	ou El -FAl	Dl	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment	
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Fundamental laws, direct current, networks analysis, electrical and magnetic fields, induction and flow laws, field parameters and interactions, alternating current, single and multi-phase systems.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	Program Outcomes (ARS) ing to the matrix in the program specs)	Course Learning Outcomes			
	A2&D2&D3 •	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and	LO1	Identify fundamental laws and direct current by conducting sample ciruits.		
A2	A2 evaluate findings, and use statistical analyses and objective		Analyze electrical circuits		
	engineering judgment to draw conclusions.	LO 3	Develop field parameters and interactions.		
	Design, model and analyze an electrical/electronic/digital/mec	LO 4	Model single and multi- phase systems.		
D2	hatronics system or component		Calculate alternating current.		
	Plan, manage, and implement designs of mechatronics systems, subsystems, modules,		Determine induction and flow laws.		
D3	and machine elements based on traditional and contemporary technological, professional, and computer-aided tools.	LO 7	Compare between single and multiphase systems in alternating current systems.		

4. Course Teaching and Learning Methods:

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
$\sqrt{}$	$\sqrt{}$	1				√	$\sqrt{}$								

Course Schedule:

V e		m . I	Expected n	umber of the Hours	e Learning	
e k	Scientific content of the course	Total Weekly	Theoretica	Training Training		
<i>N o</i> .	(Course Topics)	Hours	l teaching (lectures)	Tutorial	/ Practical Lab	
1	Basic concepts of electric circuits	4	1	2	1	-
2	Circuit elements, Ohm's Law, Kirchhoff's law, dependent and independent sources	4	1	2	1	-
3	Series, parallel, and star-delta connections and transformations.	4	1	2	1	-
4	Circuit theories: Node voltage analysis method	4	1	2	1	-
5	Mesh current analysis method, Source Transformations (voltage & current)	4	1	2	1	-
6	Thevenin's Theorem, Norton's Theorem	4	1	2	1	-
7	-	Revisio	n and Mid	Exam		
8	Superposition method; Maximum power transfer	4	1	2	1	-

9	Capacitors and Inductors	4	1	2	1	-		
1	Introduction to AC sinusoidal steady state analysis	4	1	2	1	-		
1	The Phasor Relationships for The Basic Circuit Elements,	4	1	2	1	-		
1 2	AC circuit analysis: single Phase	4	1	2	1	-		
1 3	Multi-phase systems	4	1	2	1	-		
1 4	Applications	4	1	2	1	-		
1 5 , 1 6	Final Exam.							

Experiment Topics: (If any)

Serial	Experiment
1	Kirchhoff's Laws verification
2	Node voltage method
3	Mesh current method
4	Thevenin's Theorem

5- Methods of students' assessment:

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

ourse Title (according to the bylaw):	Circuits theory				
ourse Code (according to the bylaw):	MTE 111				
epartment/s that participated in the aching:	Me	chanical E	ngineering	<u> </u>	
otal number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	

(according to the bylaw)	<u>3</u>	1	4		
Course Type:	Compulsory				
The level to which the course was introduced:	SOPHOMORE				
Academic Program:	Mechatronics Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Ahmed Abu El -FADl				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	4	10	10%
2	Exam 2 written (Semester work or quiz)	10	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	20	20%

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	WILLIAM H.HAYT," ENGINEERING CIRCUIT ANALYSIS", 2019
(books, scientific	Other References	
references, etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Non
facilities & equipment	Supplies	Non
for	Electronic Programs	Non
teaching	Skill Labs/ Simulators	Non
and	Virtual Labs	Non
learning *	Other (to be mentioned)	Non

	Course Coordinator	Program Coordinator
--	--------------------	---------------------

Name	Dr.Ahmed Abu El -FADl	Dr. Ahmed Abdalbadia
Signature	Ahmed fadl	Serenthis

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Applied mechanics				
Course Code (according to the bylaw):	ENG 102				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	2	2		4	
Course Type:		Compu	lsory		
The level to which the course was introduced:	SOPHOMORE				
Academic Program:	Mechanical Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Prof. Iman Nassar				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			rtment	
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Deflection of beam, general equations of elasticity leading to solutions for thick and thin cylindrical structures, Introduction to energy methods of analysis, superposition and dynamic loading effects. Introduction to instability and buckling, the behavior of thin-walled beams, struts and columns.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS).

	Program Outcomes (NARS) ling to the matrix in the program specs)		Course Learning Outcomes		
	(A1, A2)	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
			Solve internal force problems in statically determinate and indeterminate beams using fundamental engineering principles.		
A1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	LO2	Apply energy-based methods such as virtual work and force method to solve structural mechanics problems.		
		LO3	Analyze the behavior of thin and thick cylindrical structures under internal pressure.		
		LO4	Evaluate the buckling of columns and identify critical loads using theoretical models.		
		LO5	Analyze the deformation of initially curved beams using elasticity and mechanics principles.		
		LO6	Interpret results of structural analysis techniques and validate with theoretical models.		
	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess,	LO7	Assess the effects of dynamic loads and instability in mechanical systems.		
A2	and evaluate findings, and use statistical analyses and objective engineering judgment to draw	LO8	Evaluate stress and strain distribution in thin-walled structures based on engineering judgment.		
	conclusions.	LO9	Interpret and compare mechanical behavior of complex systems using combined theoretical and applied methods.		

4. Course Teaching and Learning Methods:

Dire Instru		Information Indirect Instruction Assisted Learning					-								
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
V	√	V				√	√			√				√	V

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly Hours	Theoretical	Tra	ining		
		Hours	teaching (lectures)	Tutorial	/ Practical Lab		
1	Introduction to Internal Forces in Beams (Support Reactions & Free- Body Diagrams	4	2	2			
2	Applications and Problems on Internal Force Analysis	4	2	2			
3	Energy Methods: Principle of Virtual Work in Structures	4	2	2			
4	Statically Indeterminate Structures: Force Method (Theory)	4	2	2			
5	Statically Indeterminate Structures: Force Method (Problem Solving)	4	2	2			
6	Mechanics of Thin-Walled Pressure Vessels	4	2	2			
7	Revision and Mid Exam						

8	Stress Analysis in Thick Cylindrical Structures	4	2	2	
9	Introduction to Initially Curved Beams	4	2	2	
10	Analysis of Curved Beams: Stress and Deflection Methods	4	2	2	
11	Buckling and Instability of Slender Columns	4	2	2	
12	Friction Effects in Mechanical Systems	4	2	2	
13	Spatial Kinematics of Rigid Bodies	4	2	2	
14	Gyroscopic Motion: Introduction and Engineering Applications .	4	2	2	
15,16	Final Exam.				

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	4	15	15%
2	Exam 2 written (Semester work or quiz)	6	15	15%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	Assignments	9	10	10%

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	Beer, F.P, (2022)," Mechanics of Material ", McGraw-HILL Book Co, USA
(books,	Other References	Khurmi, R.S.and Gupta, J.K, (2023),"Theory of Machines", Eurasia pub
references, etc.) *	Electronic Sources (Links must be added)	https://books.google.com.eg/books? id=6FZ9UvDgBoMC&printsec= copyright&redir_esc=y#v=onepage&q&f=false
	Learning Platforms (Links must be added)	EKB - Microsoft office

Supportive	Devices/Instruments	Data-show and Laptop
facilities & equipment	Supplies	White board
for	Electronic Programs	Microsoft teams
teaching	Skill Labs/ Simulators	NA
and	Virtual Labs	NA
learning *	Other (to be mentioned)	NA

	Course Coordinator	Program Coordinator
Name	Prof. Iman Nassar	Dr. Mohamed Ashraf
Signature	The Evert will girl	Cicls

Higher Technological Institute (HTI) - 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Principles of Design & Manufacturing Engineering			_	
Course Code (according to the bylaw):	ENG 103				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	2	1		3	
Course Type:	Compulsory				
The level to which the course was introduced:	JUNIOR				
Academic Program:	Mechanical Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Assoc. Prof. Dr. Said Zoalfakar				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Mechanical components, Motion and power transmission elements, Standard machine elements (threads, fasteners, locking devices, keys, splines, gears, pulleys, bearings, pipe connections, etc.), Welding and riveting conventions, Basics of Machine elements design, Stress analysis, Basic machining processes, Applications of robotics technology.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS).

	Program Outcomes (NARS) ing to the matrix in the program specs)		Course Learning Outcomes
	(A1,A2&A3)		completion of the course, the student will be able to:
Code	Text	Code	Text
	Identify, formulate, and solve complex engineering problems by applying engineering		Identify standardized and customized machine elements used in mechanical design.
A1 fundamentals, basic science, and mathematics.		LO2	Describe the basic principles of materials science, mechanical strength, and fatigue, and explain common manufacturing technologies for machine components.
	Develop and conduct appropriate experimentation and/or simulation, analyse and interpret	Use mathematical modeling and SolidWorks software to design mechanical elements.	
A2	data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to	LO4	Design and select machine elements to satisfy the function of the machine for desired applications.
	draw conclusions	LO5	Analyze and perform required calculations to select suitable standard machine components.
	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration		Explain the fundamentals of engineering technologies and techniques in designing basic automation and robotic systems.
A3	for global, cultural, social, economic, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development	LO7	Select appropriate mechanical components using manufacturers' catalogs to meet design criteria.

4. Course Teaching and Learning Methods:

Dire Instru			Indirect Instruction					r	Inform Fechn isted	ology	-				
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
√	V	√	√		√		√			√					V

Course Schedule:

Week	eek Scientific content of the course		Expected number of the Learning Hours			
No.	(Course Topics)	Weekly Hours	Theoretical	Tra	aining	
		110413	teaching (lectures)	Tutorial	/ Practical Lab	
1	Material and their properties, manufacturing technology	3	2	1	-	
2	Modes of fractures	3	2	1	-	
3	Failure Theories	3	2	1	-	
4	Design of fasteners	3	2	1	-	
5	Power screw	3	2	1	•	
6	Shaft design	3	2	1	-	
7	Revision and Mid Exam					
8	Complex stress on the shafts	3	2	1	-	

9	Gear design	3	2	1	-
10	Gear design	3	2	1	-
11	Rolling bearings selection	3	2	1	-
12	Sliding bearing design	3	2	1	-
13	flat pulley transmission	3	2	1	-
14	V-belt and pulley transmission	3	2	1	-
15,16	Final Exam.				

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	6	5	5%
2	Exam 2 written (Semester work or quiz)	10	5	5%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	Final Practical/Clinical/ Exam			
6	Final Oral Exam			
7	Assignments / Project /Portfolio/ Logbook	30	0	30%

	The main (essential) reference (must be written in full according to the scientific documentation method)	Khurmi, R. S., and J. K. Gupta. <i>A Textbook of Machine Design (LPSPE)</i> . S. Chand publishing, 2019.	
Learning resources (books, scientific references, etc.) *	Other References	 Jonathan Wickert, An Introduction to Mechanical Engineering, CL - Engineering, 2nd' Ed., 2005. D.K. Singh, Fundamentals of Manufacturing Engineering, CRC Press, 2008. Robert L Mott, Machine Elements in Mechanical Design, Prentice Hall, 4th' Ed., 2003. 	
	Electronic Sources (Links must be added)	NA	

	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Data-show and Laptop
facilities & equipment	Supplies	White board
for	Electronic Programs	Microsoft teams
teaching	Skill Labs/ Simulators	NA
and learning *	Virtual Labs	NA
	Other (to be mentioned)	NA

	Course Coordinator	Program Coordinator
Name	Assoc. Prof. Dr. Said Zoalfakar	Dr. Mohamed Ashraf
Signature	Said Zoalfakar	Gils

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Principles of Biomedical Engineering			
Course Code (according to the bylaw):	MDE 101			
Department/s that participated in the teaching:	Biomedica	al Enginee	ring	
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	2	1		<u>3</u>
Course Type:		Elect	ive	
The level to which the course was introduced:		SOPHO	MORE	
Academic Program:	ALL ENGINEERING PROGRAMS			
Institute:	Higher Technological Institute			
Name of Course Coordinator:	Ass. Prof. Amal EL Dosoky			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

History of biomedical engineering, examples of biomedical engineers contributions and research fields classification of biomedical engineering, the interrelation between systems and biomedical engineering, examples of physiological systems and medical instruments – General overview about different biomedical devices and hospital departments from point of view of device name, function, and its place in the hospital.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

Program Outcomes (NARS/ARS) (according to the matrix in the program specs)		Course Learning Outcomes		
A1, A5, A8, A10		Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
A 1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	LO1	Supports understanding of how biomedical devices solve physiological problems.	
A5	Practice research techniques and methods of investigation as an inherent part of learning.	LO2	investigate recent innovations in biomedical engineering using appropriate research methods.	
	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO3	collaboration to create a presentation on a biomedical engineering topic.	
A8		LO4	demonstrate effective communication skills through presentations and reports on biomedical devices, systems, and case studies.	
	Acquire and apply new	LO5	Acquire a knowledge about vital sign and Medical device.	
A10	knowledge; and practice self, lifelong and other learning strategies.	LO6	explore current trends and new developments in biomedical engineering independently.	

4. Course Teaching and Learning Methods:

Direct Instruction			Indirect Instruction						Information Technology- Assisted Learning						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	$\sqrt{}$						V				V				

Course Schedule:

Week	Scientific content of the course	Total Weekly	Expected number of the Learning Hours				
No.	(Course Topics)		Theoretical	Training			
		Hours	teaching (lectures)	Tutorial	Lab / Practical		
1	An overview: general idea about the concepts of Biomedical Engineering and its applications in the field.	3	2	1			
2	Introduction to Human anatomy and physiology.	3	2	1			
3	Cardiovascular and Respiratory Systems with Related Devices	3	2	1			
4	Nervous and Muscular Systems with Related Devices	3	2	1			
5	Classification of Biomedical Engineering and Fields Introduction to Bio-signal	3	2	1			
6	Introduction to Bio-Imaging	3	2	1			
7	Revision and Mid Exam						
8	Introduction to Bio-Instrument	3	2	1			
9	Introduction to Bio-mechanics	3	2	1			
10	Hospitals and its Organization	3	2	1			
11	Hospital Departments and Devices – Part 2 and Quiz	3	2	1			
12	Biomedical Engineering: Innovations (future trends) and Opportunities	3	2	1			
13	Student Presentations / Mini- Projects	3	2	1			
14	Student Presentations / Mini- Projects	3	2	1			
15,16	Final Exam.						

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Quiz	11	10	10%
2	Midterm exam	7	20	20 %
3	Final Written Exam	15, 16	40	40 %
4	Assignments / Mini-Projects /Sheets	Across the term and According to the schedule	30	30%

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	S.A.BERGER (1996). INT.TO BIOENGINEERING. N.YORK: OXFORD. ANDREW G. WEBB (2018). PRINCIPLES OF BIOMEDICAL. NEW YORK: CAMBRIDGE
scientific	Other References	
references, etc.) *	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	
facilities &	Supplies	
equipment for	Electronic Programs	
teaching	Skill Labs/ Simulators	
and	Virtual Labs	
learning *	Other (to be mentioned)	

	Course Coordinator	Program Coordinator				
Name	Ass. Prof. Amal EL Dosoky	Dr. Ghada Karim				
Signature	Lb	720				

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Monitoring & Quality control systems				
Course Code (according to the bylaw):	MNG 101				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	1			1	
Course Type:	Compulsory				
The level to which the course was introduced:	JUNIOR				
Academic Program:	Mechanical Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr.Radwa A. Ghazalla				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. <u>Course Overview (Brief summary of scientific content):</u>

Introduction: history of quality, the dimensions of quality. Quality Control Concepts: quality assurance, total quality management. Control systems: objectives of control systems, quality systems, top management communication. Hazard Analysis: high -quality recommendations, commitment monitoring, follow up Systems, the base line of hazard analysis critical point (HACCP). Sampling and Inspection: Sample size, sampling error, sampling designs and inspection, acceptance sampling plans. Quality Control Tools and Techniques: tools for creating new concepts, tools for organization and analysis of data, tools for determining and solving problems (Control Charts for Variables - Control Charts for Attributes - PRE - control - analysis - flow charts). International Standards Accreditation: Accreditation meaning, ISO requirements and recommendations, Audit program, Certification body. Analyzing Process Capability:

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS).

	Program Outcomes (NARS) ing to the matrix in the program specs)	Course Learning Outcomes				
	A4, A8, A9	Upon completion of the course, the student will be able to:				
Code	Text	Code	Text			
A4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	LO1	Apply appropriate statistical methods to evaluate operational or quality performance according to industry standards.			
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO2	Optimize the use of graphical data and visual tools to effectively communicate performance outcomes.			
A9	Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership	LO3	Compare and evaluate different quality management systems to support continuous improvement and innovation.			
	skills to anticipate and respond to new situations	LO4	Apply modern quality theories to optimize resource utilization and enhance organizational effectiveness.			

4. Course Teaching and Learning Methods:

Dire Instru			Indirect Instruction									Information Technology- Assisted Learning			
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly Hours	Theoretical	Training			
		Hours	teaching (lectures)	Tutorial	Lab / Practical		
1	Introduction, Dimensions, Concepts, Objectives, Characteristics	2	1	1			
2	Leaders of Quality	2	1	1			
3	Quality systems, Costs and measures, Quality assurance	2	1	1			
4	Quality Control Tools	2	1	1			
5	Total Quality Management	2	1	1			
6	Review	2	1	1			
7	Revis	ion and M	Iid Exam				
8	Hazard Analysis	2	1	1			
9	Hazard Analysis	2	1	1			
10	Sampling and Inspection	2	1	1			
11	Iso Definitions and tools	2	1	1			
12	Analyzing Process Capability	2	1	1			
13	Case study discussion and submission	2	1	1			
14	Review and case study discussion	2	1	1			
15,16		Final Exa	am.				

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	4	10	10%
2	Exam 2 written (Semester work or quiz)	12	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %

5	Case study	13	10	10%
6	Assignments / Project /Portfolio/ Logbook	9	10	10%

	The main (essential) reference (must be written in full according to the scientific documentation method)	Project Management: a systems approach to planning, scheduling, and controlling. Kerzner, Harold. (2020).
Learning	Other References	Montgomery, D. C., "Introduction to Statistical Quality Control", 8th Edition, Wiley, 2020.
resources (books, scientific references, etc.) *	Electronic Sources (Links must be added)	MIT OpenCourseWare – Quality Control and Process Improvement https://ocw.mit.edu ISO Official Website (Standards & Certification) https://www.iso.org NIST – Process Capability & Quality Metrics https://www.nist.gov/services-resources/software/process-capability-analysis
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Data Show
facilities & equipment	Supplies	N/A
for	Electronic Programs	MS-Teams
teaching	Skill Labs/ Simulators	N/A
and	Virtual Labs	N/A
learning *	Other (to be mentioned)	N/A

	Course Coordinator	Program Coordinator
Name	Dr. Radwa A. Ghazalla	Dr. Mohamed Ashraf
Signature	رضوی غزاله	Gils

Higher Technological Institute (HTI) - 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	ourse Title (according to the bylaw): Principles of Mechatronics Engineering					
Course Code (according to the bylaw):	MTE 101					
Department/s that participated in the teaching:	Mechanica	al Enginee	<u>ring</u>			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total		
(according to the bylaw)	<u>3</u>	1				
Course Type:		Elect	ive			
The level to which the course was introduced:		SOPHO	MORE			
Academic Program:	Mechatronics Engineering					
Institute:	Highe	r Technolo	gical Insti	tute		
Name of Course Coordinator:	Dr.Ahmed	Abu El -F/	ADL			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department					
Course Specification Approval Date:		8/12/2	025			

2. Course Overview (Brief summary of scientific content):

Definitions of Mechatronics Engineering, Mechatronics Engineer skills & responsibilities. A typical Mechatronics system (Target system, Sensors, I/O signal conditioning, Control unit, Actuator, &Monitoring). Methodology of analysis and design of Mechatronics system. Examples of, sensors, control unit, electro-mechanical and electromagnetic actuators, shape memory alloys (SMA), artificial muscles using SMA, piezoelectric actuators. Pneumatic

actuator, electro- Pneumatic systems- Introduction and hands on a software package used in Mechatronics system analysis and design

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	rogram Outcomes (ARS) ding to the matrix in the program specs)	Course Learning Outcomes				
	A1, A3, A10	Upon completion of the course, the student will be able to:				
Code	Text	Code	Text			
A1	Identify, formulate, and solve complex engineering problems by applying engineering	LO1	Identify principles of any mechatronics system (sensors, I/O signal conditioning, Control unit, Actuator).			
	fundamentals, basic science and mathematics		Identify methodology of analysis. Of mechatronics system			
А3	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO3	Design for the needed mechatronics system, simulation, materials and components selection, mechanical implementation, control implementation, signal conditioning and interfacing consideration, software building and full system testing and tuning.			
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	LO4	Acquire new knowledge for the structure of electro-mechanical and electromagnetic actuators, Shape memory alloys (SMA), Artificial muscles using SMA.			

Dir Instru	uctio	Indirect Instruction					Information Technology- Assisted Learning								
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V	V		V	V	V						$\sqrt{}$		V

Week	Scientific content of the course (Course Topics)	Total	Expected number of the Learning Hours					
No.		Weekly	Theoretical	Trai				
	• •	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Definitions of the Mechatronics Engineering	4	2	1	1	LO 1		
2	Mechatronics Engineer skill & responsibility	4	2	1	1	LO1		
3	A typical Mechatronics system (Target system, Sensors, I/O signal conditioning)	4	2	1	1	LO2		
4	A typical Mechatronics system (Control unit, Actuators, & Monitoring)	4	2	1	1	LO2		
5	Methodology of analysis and design of Mechatronics system	4	2	1	1	LO2		
6	Examples of Sensors	4	2	1	1	LO1		
7	R	evision a	and Mid Exa	m				
8	Control unit	4	2	1	1	LO 1, LO3		

Page 3 of 5

9	Electro-mechanical and electromagnetic actuators	4	2	1	1	LO4
10	Shape memory alloys (SMA)	4	2	1	1	LO4
11	Artificial muscles using SMA	4	2	1	1	LO4
12	Piezoelectric actuators	4	2	1	1	LO4
13	Pneumatic actuators and electro- pneumatic systems	4	2	1	1	LO4
14	Introduction and hands on Software Package used in Mechatronics systems analysis and design	4	2	1	1	LO3
15,16		Fina	ıl Exam.			

Experiment Topics: (If any)

Serial	Experiment
1	Connection of mechatronics a system components.
2	Mechanical design for mechatronics system using software program
3	Electrical wiring component with electrical circuits
4	Programming of mechatronics system to acquire the required task.

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	ŧ	1.	1.%
2	Exam 2 written (Semester work)	11	1.	1.%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	Final Practical/Clinical/ Exam		0	
6	Final Oral Exam		0	

7	Assignments / Project /Portfolio/ Logbook	According to schedule	20	20%
8	Field training		0	
9	Other (Mention)		0	

	The main (essential) reference (must be written in full according to the scientific documentation method)	W. Bolton; "Mechatronics – Electronic Control Systems in Mechanical & Electrical Engineering.", Longman, seventh edition,2019
Learning resources (books, scientific	Other References	Alciator & Histand, "Introduction to Mechatronics & Measurements Systems"; McGraw-Hill, Second,
references, etc.) *	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive facilities &	Devices/Instruments	Elvis LabVIEW- Breadboard –power supply
equipment	Supplies	NON
for	Electronic Programs	NON
teaching	Skill Labs/ Simulators	NON
and	Virtual Labs	NON
learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator		
Name	Name Dr.Ahmed Abu El -FADI Dr.Ahmed Ab			
Signature	Ahmed fadl	Serenties		

Higher Technological Institute (HTI) - 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Electronics				
Course Code (according to the bylaw):	MTE 121				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>2</u>	1		<u>3</u>	
Course Type:	Compulsory				
The level to which the course was introduced:	SOPHOMORE				
Academic Program:	Mechatron	nics Engine	<u>eering</u>		
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Prof. Mahmoud El-Dabah				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment	
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Introduction - Semiconductor physics as the basis of understanding electronics, Junction diode, Zener diode Voltage regulator, Optoelectronic diodes, Diode circuits, BJT physics, Common emitter transistor circuit, BJT switch, Darlington transistor, Phototransistor and Field effect transistor

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	rogram Outcomes (ARS) ding to the matrix in the program specs)	Course Learning Outcomes		
	A1, A2, D1, D3		empletion of the course, the student will be able to:	
Code	Text	Code	Text	
	Identify, formulate, and solve complex engineering	LO1	Define semiconductor physics as the basis for understanding electronics.	
A1	problems by applying engineering fundamentals, basic science, and mathematics.	LO2	Discuss the characteristics and applications of junction diodes.	
	Develop and conduct appropriate experimentation		Analyze the operation and applications of Zener diodes.	
A2	and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO4	Examine voltage regulator.	
	Integrate a wide range of analytical tools, techniques, equipment, and software pacakage to design and develop mechatronics systems	LO5	Develop optoelectronic diodes and diode-based circuits.	
D1		LO6	Develop knowledge of BJT physics, and implementation of commonemitter transistor circuits, and BJT switches.	
	Plan, manage, and implement designs of mechatronics systems.	LO7	Design Darlington transistor configurations.	
D3	mechatronics systems, subsystems, modules, and machine elements based on traditional and contemporary technological, professional, and computeraided tools.	LO8	Compare the characteristics of phototransistors and field-effect transistors (FETs).	

Dir Instru	uctio	Indirect Instruction					Information Technology- Assisted Learning			-					
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
V	V	V			V	V	$\sqrt{}$			V					

Week	Scientific content of the course	Total	Expected number of the Learning Hours					
No.	(Course Topics)	Weekly	Theoretical	Trai	ning			
	, ,	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	semiconductor physics as the basis of understanding electronics and PN Junction	4	1	2	1	-		
2	Junction diode	4	1	2	1	-		
3	Zener diode	4	1	2	1	-		
4	Voltage regulator	4	1	2	1	-		
5	Optoelectronic diodes	4	1	2	1	-		
6	Diode circuits	4	1	2	1	-		
7	Revision and Mid Exam							
8	BJT physics	4	1	2	1	-		

9	Common emitter transistor circuit	4	1	2	1	-	
10	BJT switch	4	1	2	1	-	
11	Darlington transistor	4	1	2	1	-	
12	Phototransistor	4	1	2	1	-	
13	Junction Field Effect transistor	4	1	2	1	-	
14	MOS-Field effect transistor	4	1	2	1	-	
15,16	Final Exam.						

Experiment Topics: (If any)

Serial	Experiment					
1	Diode Characteristic					
2	HWR					
3	FWR					
4	Zener					
5	BJT Characteristic					
6	BJT switch					
7	MOSFET					

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	ŧ	١.	1.%
2	Exam 2 written (Semester work)	11	١.	1.%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	According to schedule	20	20%

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	 Adel S. Sedra and Kenneth C. Smith., "Microelectronic Circuits", Seventh Edition Floyd, T.L., "Electronic Devices", Prentice Hall, 2022.
scientific references,	Other References	A. Prof. Mahmoud El-Dabah, "Electronics"; HTI, 2024.
etc.) *	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	BREAD BOARD
facilities &	Supplies	POWER SUPLLY
equipment for	Electronic Programs	PROTUS
teaching	Skill Labs/ Simulators	NON
and	Virtual Labs	NON
learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Prof. Mahmoud El-Dabah	Dr. Ahmed Abdalbadia
Signature	MAHMOUD	Paraullies

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Computer Aided Mechanical Drafting			
Course Code (according to the bylaw):	MTE 127			
Department/s that participated in the teaching:	<u>Me</u>	chanical E	ingineerin	g
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)		<u>3</u>		3
Course Type:	Compulsory			
The level to which the course was introduced:	SOPHOMORE			
Academic Program:	Mechatron	nics Engine	<u>eering</u>	
Institute:	Higher Technological Institute			itute
Name of Course Coordinator:	DR.AHMEI	D SHABAN	<u>l</u>	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)				artment
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Fits and tolerance, Review of the CADr software used. Use of both hand sketch and the CADr software for, Construction drawing, working drawing, threads, fasteners, locking devices, drawing representation of welding, rivets gears, pulleys and bearings- Different types of keys and splints- Application for Mechatronics.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	rogram Outcomes (ARS) ding to the matrix in the program specs)	C	Course Learning Outcomes
	A5, A6, A7, A8, B2, D1	Upon co	mpletion of the course, the student will be able to:
Code	Text	Code	Text
A 5	Practice research techniques and methods of investigation as an inherent part of learning.	LO1	Investigate standards of fits, tolerances, and mechanical components (e.g., gears, pulleys, bearings) using references and CAD software in design decisions.
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO2	Develop complete sets of mechanical working drawings, including welds, threads, and fasteners, while considering cross-disciplinary needs in mechatronics applications.
A7	Function efficiently as an individual and as a member of multi-disciplinary and multi- cultural teams.	LO3	Collaborate in diverse teams in production of comprehensive CAD drafting projects that integrate locking devices, keys, splines, and assemblies relevant to mechatronics systems.
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO4	Present mechanical drafting work effectively using both hand sketches and CAD software, clearly communicating design intent, assembly details, and standards.
B2	Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field	LO5	Produce technical drawings and three-dimensional models of mechanical parts using computeraided design tools and software.

D1	Integrate a wide range of analytical tools, techniques, equipment, and software pacakage to design and develop mechatronics systems		Utilize CAD software with analytical design principles to model, simulate, and document components and assemblies essential for mechatronics applications.
----	---	--	--

Dir Instr	uctio	Information Indirect Instruction Technology- Assisted Learning				-									
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V	V			V	V					V	V	V	V

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Trai	ning		
	• • • • • • • • • • • • • • • • • • • •	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other	
1	Introduction to Mechanical Drafting and Standards	3	0	0	3	-	
2	Review of CAD Software Tools and Interface	3	0	0	3	-	
3	Sketching Techniques and Graphic Standards	3	0	0	3	1	
4	Fits and Tolerances (Types and Applications)	3	0	0	3	-	
5	Drawing Threads, Fasteners, and Locking Devices	3	0	0	3	-	

6	Welding Symbols and Rivet Representation	3	0	0	3	-
7	R	evision a	and Mid Exa	m		
8	Bearings, Keys, Gears, and Splines	3	0	0	3	-
9	Assembly Drawings and BOM Preparation	3	0	0	3	-
10	Drawing Review and Error Analysis	3	0	0	3	-
11	Collaborative Design Planning and Role Assignments	3	0	0	3	-
12	Group Project Development and Monitoring	3	0	0	3	-
13	Design Documentation and Report Writing	3	0	0	3	-
14	Final Project Presentations	3	0	0	3	-
15,16	Final Exam.					

Experiment Topics: (If any)

Serial	Experiment
1	CAD Modeling of Fasteners and Locking Devices
2	Create an Assembly Drawing with BOM
3	Technical Drawing Review and Design Correction
4	Fits and Tolerances Application
5	Sectional and Auxiliary Views in CAD
6	Drafting Pulleys and Gear Mechanisms
7	Drawing Representation of Welding and Riveting
8	Reverse Engineering Drafting Exercise
9	Planning a Multi-Part Mechanical System
10	Design Evaluation & Integration in Mechatronics System

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10%
2	Exam 2 written (Semester work)	12	10	10%

3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-14	20	20%

Learning resources (books, scientific	The main (essential) reference (must be written in full according to the scientific documentation method)	Engineering Drawing and Design (7th Edition, 2020) Authors: David A. Madsen & David P. Madsen
references, etc.) *	Other References	
etc.)	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Laptop
facilities &	Supplies	
equipment for	Electronic Programs	SolidWorks
teaching	Skill Labs/ Simulators	NON
and	Virtual Labs	NON
learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Dr. Ahmed Shabban	Dr. Ahmed abd el badii
Signature	A)-	Sarahlus

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Mathematics 4				
Course Code (according to the bylaw):	MTH 102				
Department/s that participated in the teaching:	BASIC SCIENCES				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>2</u>	<u>2</u>		<u>4</u>	
Course Type:		Compu	lsory		
The level to which the course was introduced:	SENIOR 2				
Academic Program:	ALL ENGINEERING PROGRAMS				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Afaf Hatem Syam				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment	
Course Specification Approval Date:	7/26/2025				

2. Course Overview (Brief summary of scientific content):

Differential Equation of the first order (Separable differential equations – Homogeneous differential equations – Exact differential equations – Integrating factor – Linear differential equations) Higher order differential equations – The differential operators – The complementary solution – Evolution of particular solution (Inverse operator Lagrange's method Reduction of order – Cauchy Eular Type differential equations) - system of Differential equations - Special Functions (Gama – Beta – Lagender- Bessel) – Laplace Transform – Solution of ordinary differential equations using Laplace methods.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

Program Outcomes (NARS/ARS) (according to the matrix in the program specs)		Course Learning Outcomes			
A1, A5, A10		Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
	A1. Identify, formulate, and solve	LO1	Apply the the technique which is approviate the given problem.		
A1	complex engineering problems by using differential equations techniques.	LO2	Describe the required conditions for solving the D.E. by the given method.		
		LO3	Solve D.E. by available methods.		
	Practice research techniques and	LO5	Distinguish the type of the given one which with constants or variables coefficients.		
A5	methods of investigation as an inherent part of learning.		LO4	Identify the number of solutions according to the given equation.	
	Acquire and apply new	LO6	Assess the special functions for solving problems.		
A10	knowledge, and practice self, lifelong and other learning strategies.	L07	Access the special functions for solving some integrations.		
		LO8	Evaluate the laplace transform for solving engineering problems.		

Dir Instru			Indirect Instruction Tec					Гесhn	Cormation chnology- ced Learning						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
	V			V		V				V				V	

Week	Scientific content of the course	Total	Expected number of the Learning Hours			
No.	(Course Topics)	Weekly	Theoretical	Trai	ining	
	• • •	Hours	teaching (lectures)	Tutorial	/ Practical Lab	
1	Types and order of the differential equations (D.Es)	4	2	2	0	
2	First D.Es	4	2	2	0	
3	Separation and Homogenous D.Es	4	2	2	0	
4	Exact and not Exact D.Es	4	2	2	0	
5	Linear and Bernoulli D.Es	4	2	2	0	
6	Homogenous Higher order D.Es	4	2	2	0	
7	Revision and Mid Exam					
8	Lagrange method for D.Es	4	2	2	0	
9	Cauchy Euler for D.Es with Variable coefficients	4	2	2	0	

10	Laplace transform for D.Es	4	2	2	0
11	Gamma function	4	2	2	0
12	Betta function	4	2	2	0
13	Applications of Gamma function and Betta function	4	2	2	0
14	Lagrange method for D.Es 4 2 2 0				0
15,16	Final Exam.				

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	3	10	10%
2	Exam 2 written (Semester work)	12	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments	13,14	20	20%

Learning resources (books, scientific references, etc.) *	The main (essential) reference (must be written in full according to the scientific documentation method)	 Schaum's Outline of Differential Equations, 5th Edition, ISBN: 9781264258826, 2022McGraw Hill. Erwin Kreyszig, Advanced Engineering Mathematics, Edition 10 (2011), Wiley. Earl W. Swokowski, "Calculus". Thomas' Calculus: Early Transcendentals Richard Bronson (Author), Gabriel B. Costa, Schaum's Outline of Differential Equations, Fifth Edition Erwin Kreyszig, Advanced Engineering Mathematics
--	---	--

	7. Richard Bronson, Schaum's Outline of Differential Equations8. Lawrence Perkom ' Differential Equations and Dynamical Systems', Third Edition
Electronic Sources (Links must be added)	https://www.cuemath.com/trigonometry/inverse- trigonometric-functions/ https://www.cuemath.com/trigonometry/inverse- trigonometric-functions/
Learning Platforms (Links must be added)	EKB - Microsoft office

	Course Coordinator	Program Coordinator
Name	Dr. Afaf Hatem Syam	Prof. Ahmed Abd El-Gafar
Signature	AH Syam	Julie)

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Mathematical Analysis			
Course Code (according to the bylaw):	MTH 104			
Department/s that participated in the teaching:	BASIC SCIENCES			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>2</u>	<u>2</u>		<u>4</u>
Course Type:		Elect	ive	
The level to which the course was introduced:	JUNIOR			
Academic Program:	ALL ENGINEERING PROGRAMS			
Institute:	Higher Technological Institute			
Name of Course Coordinator:	D. Hanan M. Ahmed			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	n the decision/minutes of the department The division council minute of department			rtment
Course Specification Approval Date:	7/26/2025			

2. Course Overview (Brief summary of scientific content):

Complex numbers – Polar form of complex numbers – Powers and roots – Curve and regions in the complex plan – Complex functions – Polynomials – Exponential function – Trigonometric functions – Hyperbolic function – Logarithm – General power mapping by special functions- Limits – Continuity - Derivative – Analytic functions – Cauchy Rieman equations – Harmonic function – Line integral in complex plane – Two integration methods – The method of use of the path- Cauchy integral theorem – Path independent – Existence of indefinite integral – Cauchy integral formula – Derivative of analytic function - Practical method of obtaining power series – Uniform convergence – Laurent series – Application - Zeroes and singularities – Residues – Cauchy residue theorem – Evolution of real integral.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	Program Outcomes (NARS/ARS) (according to the matrix in the program specs)		Course Learning Outcomes
(A1, A2)		Upon com	pletion of the course, the student will be able to:
Code	Text	Code	Text
	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO1	Identify the complex numbers and the polar form of complex numbers .
A 1		LO2	Formulate the theorems of Limit Derivative and analytic Function, also the elementary functions.
		LO3	Apply Cauchy-Riemann equations and harmonic functions on complex functions to the differentiation and the concept of analytic function
		LO4	Explain the residues of the complex function with creative thinking in their applications
	Develop and conduct appropriate	LO5	Assess issues of the mathematical results
	experimentation or simulation ,analyze and interpret data, assess	LO6	Study the concepts of the line integrals and the Cauchy-Riemann formula
A2	and evaluate findings, and use statistical analysis and objective engineering judgment to draw conclusions	LO7	Explain the infinite series in the complex plane (power series, Taylor's series, Laurent's series). Discuss integrations in the complex plane
		LO8	Apply the residues theorem to handle complex functions with applications.
		LO9	Communication skills.

Dir Instru			Information Indirect Instruction Assisted Learning							-					
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
V	√				√	√	V			√	√				√

Week	Week Scientific content of the course		Expected number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Training			
		Hours	teaching (lectures)	Tutorial	/ Practical Lab		
1	Complex numbers. Polar form of complex numbers. Powers and roots. Curves and regions in the complex plane	4	2	2	-		
2	Limit, Derivative, Analytic Function, Cauchy Riemann Equation, Exponential function	4	2	2	-		
3	Trigonometric functions, Hyperbolic functions, Logarithm, General power, Mapping by Special function	4	2	2	-		
4	Complex functions. Polynomials. Exponential function. Trigonometric functions	4	2	2	-		
5	Hyperbolic function. Logarithm. General power. Mapping by special functions	4	2	2			
6	Mapping by special functions						

7	Revision and Mid Exam				
8	Line integral in the complex plane. Two integration methods.				
9	Cauchy integral theorem. Path independence. Existence of indefinite integral.				
10	Cauchy integral formulas. Derivative of analytic function. Power series Taylor series				
11	Practical methods of obtaining power series. Uniform convergence.				
12	Laurent series, Applications, Zeros and Singularities. Residues.				
13	Cauchy residue theorem.				
14	Evaluation of real integrals				
15,16	Final Exam.				

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)		10	
2	Exam 2 written (Semester work)		10	
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	Final Practical/Clinical/ Exam		0	
6	Final Oral Exam		0	
7	Assignments / Project /Portfolio/ Logbook		20	
8	Field training		0	
9	Other (Mention)		0	

	The main (essential) reference (must be written in full according to the scientific documentation method)	"Engineering Mathematics", zill,2013
Learning resources (books, scientific references, etc.) *	Other References	Complex Analysis with Applications to Number Theory (Infosys Science Foundation Series) 1st ed. 2020 Edition. Mathews, Russell W. Howell.
	Electronic Sources (Links must be added)	 https://math.fandom.com/wiki/Hypermathematics https://github.com/AlexCharlton/hypermath https://www.britannica.com/science/mathematics
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	
facilities &	Supplies	
equipment	Electronic Programs	
for	Skill Labs/	
teaching	Simulators	
and	Virtual Labs	
learning *	Other (to be mentioned)	
	mentionea)]

	Course Coordinator	Program Coordinator
Name	Hanan M. Ahmed	Prof. Ahmed Abd El-Gafar
Signature	Hanan M. Ahmed	- Liebler)

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Arts and Architecture					
Course Code (according to the bylaw):	ARE 101					
Department/s that participated in the teaching:	Architectu	ral Enginee	ering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total		
(according to the bylaw)	1	<u>2</u>	<u>0</u>	<u>3</u>		
Course Type:	Elective					
The level to which the course was introduced:	JUNIOR					
Academic Program:	ALL ENGINEERING PROGRAMS					
Institute:	Highe	r Technolo	gical Insti	tute		
Name of Course Coordinator:	Assoc. Prof. Sahar Ezz El Arab Ramadan					
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department					
Course Specification Approval Date:	8/10/2025					

2. Course Overview (Brief summary of scientific content):

History of fine arts (ornamental - sculpture - drawing.....) Art movements in the twentieth century: cubism, expressionism, surrealism, art collections such as De Steele and Bauhaus and their new ideas on the interconnectedness of arts, architecture, design, art education and art trends across historical times and architectural and parallel trends, contemporary artistic trends and their effects on architecture, structural values in artwork (contrast, balance, color, rhythm, movement.......) Artistic metrics and design foundations in architecture

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	rogram Outcomes (NARS) ng to the matrix in the program specs)	Course Learning Outcomes				
	A1, A5, A9, A10	Upon completion of the course, the student will be able to:				
Code	Text	Code	Text			
	Identify, formulate, and solve complex engineering problems by	LO1	Identify art and architecture with their concepts throughout the ages			
A1	applying basic science and mathematics engineering fundamentals.	LO2	Solve complex problems in art forms in buildings.			
A 5	Practice research techniques and methods of investigation as an inherent part of learning.	LO3	Practice research techniques in painting- sculpture-photography-interior design related to architecture.			
А9	Communicate effectively using different modes, tools, and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner.	LO4	Express effectively with audiences by different techniques of art direction in various buildings.			
A10	Acquire and apply new knowledge, and practice self, lifelong and other	LO5	Apply new knowledge from various art schools of architecture and arts.			
	learning strategies	LO6	Practice design ideas by special application of art forms in different architectural styles.			

Dir Instru			Indirect Instruction T							Te	forma echnol ted Lo	ogy-	ıg		
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
√	V	V	V		V	V	V			V	V			V	

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly Hours	Theoretical teaching		ining		
			(lectures)	Tutorial	Lab / Practical		
1	Trends of art and architecture across different historical eras.	3	2	1	0		
2	Fine Arts (Sculpture - Drawing - Photography - Interior Design) Its relationship to architecture	3	2	1	0		
3	Artistic movements of the twentieth century and their influence on architecture art	3	2	1	0		
4	Modern School Trends (De Steel - Bauhaus _ and Their Impact on Architecture Arts).	3	2	1	0		
5	Quiz 1 & practicing of analyze School Trends (De Steel - Bauhaus _ and Their Impact on Architecture Arts).	3	2	1	0		
6	Aesthetic features in architectural art formations that complement different design ideas	3	2	1	0		
7	Revis	ion and M	lid Exam				
8	The foundations of the aesthetics of artistic architectural formations of (variation, poise, rhythm)	3	2	1	0		
9	Analyze horizontal projection of formations of architectural forms that fulfill the principle of design	3	2	1	0		
10	The relationship between creativity in arts and architectural design	3	2	1	0		
11	Aesthetic features in contemporary and future architecture arts	3	2	1	0		
12	Revision.	3	2	1	0		
13	semi final	3	2	1	0		
14	Final project+general discussion	3	2	1	0		
15,16		Final Exa	m.				

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Quiz 1 written	5	10	10 %
	(Semester work)			
2	Midterm exam	7	20	20 %
3	Final Written Exam	15, 16	40	40 %
4	Final Oral Exam	14	5	5 %
5	Assignments / Project	1,2,3,4,5,6,8,9,10,11,12,13,14	25	25 %
	/Portfolio/ Logbook			

	The main (essential) reference (must be written in full according to the scientific documentation method)	Abdel-Gawad, T. A. (1955). History of Architecture and Arts in the Early Ages (in Arabic). Cairo: Supreme Council of AntiquitiesCruickshank, D. (1999). A History of Architecture. New Delhi: CBS Publisher
Learning resources (books, scientific references, etc.) *	Other References	 White, Edward T (1975): A Vocabulary of Architectural Forms, Architectural Media. William (Author) (2010): The Art of Drowings, Madison Books; Revised ed. Edition. Architecture, Form, Space, and Order by Frank Ching Francis D.K. Ching (2007): Architecture: Form. Space & Order, Van Nostrand Reinhold, New York. Paul Zelenski, Mary Pat Fisher (2006): Shaping Space: The Dynamics of Three-Dimensional Design, (3rd edition). www.amazon.com Stephen Luecking (2002): Principles of Three-Dimensional Design: Objects, Space and Meaning, www.amazon.com Wucius Wong (1977): Principles of Three-Dimensional Design, Van Nostrand Reinhold Company, New York The Architecture of Happiness" by Alain de Botton (2006): Examines the relationship between architecture and human wellbeing, combining philosophy and design. The Future of Architecture in 100 Buildings" by Marc Kushner

		 (2015): Explores innovative and groundbreaking architectural designs from around the world. Bauhaus: A Conceptual Model" by Boris Friedewald (2019): A comprehensive look at the Bauhaus movement and its impact on architecture and design The Art of Looking Up" by Catherine McCormack (2019): A visual feast exploring the diverse world of ceilings in significant buildings worldwide. The Hare with Amber Eyes" by Edmund de Waal (2010): Though not the latest, it's a notable work exploring the history of a collection of Japanese netsuke through generations. Norman, D. (2023). Design for a better world: Meaningful, sustainable, humanity centered. The MIT Press. Peters, S. (2024). Architectural material systems: Conceptual design strategies. Birkhäuser. Fowkes, M., & Fowkes, R. (2023). Art and climate change: A concise history. Thames & Hudson.
	Electronic Sources (Links must be added)	 http://www.sagradafamilia.org/en/ https://www.skyscrapercity.com/ http://www.design-theory.com/
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive facilities & equipment for teaching and learning *	Devices/Instruments	Data show (projector) Laptop or desktop computer

	Course Coordinator	Program Coordinator
Name	Assoc. Prof. Sahar Ezz El Arab Ramadan	Dr.Maysa Ali Selim
Signature		maysa solim

Higher Technological Institute (HTI) - 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Manufacturing Technology				
Course Code (according to the bylaw):	ENG 173				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	ctical Other (specify)		
(according to the bylaw)	<u>3</u>	1		4	
Course Type:	Compulsory				
The level to which the course was introduced:	JUNIOR				
Academic Program:	Mechatronics Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Abdou Abdallah Hassan				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Fundamental of mechanical behavior of material, Structure and manufacturing properties of metal-Phase diagrams and heat treatment, Casting processes, Bulk deformation processes, forging, drawing, rolling, and extrusion. Sheet metal forming processes, blanking, piercing. Metal removal processes, Turning, drilling, milling, shaping, broaching.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes				
A3,A4,B2,B3		Upon completion of the course, the student will be able to:				
Code	Text	Code	Text			
	Apply engineering design processes to produce cost- effective solutions that meet specified needs with	L01	Identify the different types of machining, sand casting, and metal forming processes.			
۸3	consideration for global, cultural, social, economic,	LO2	Distinguish between the different methods of manufacturing.			
A3	environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO3	Formulate forces for various manufacturing methods and examination of force uses in metal forming.			
A4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO4	Distinguish analytically between manufacturing methods and production defects.			
	Plan, manage and carry out designs of mechanical systems and machine	LO5	Analyze manufacturing processes and production faults classification			
B2	elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field	LO6	Determine the dimensions of a gating system.			
В3	Select conventional mechanical equipment according to the required performance.	LO7	Select the suitable type of gating system			

Dir Instr	uctio	Indirect Instruction					Information Technology- Assisted Learning								
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V			V	V	V			V					

Week	Scientific content of the course	Total	Expected number of the Learning Hours						
No.	(Course Topics)	Weekly Hours	Theoretical	Trai					
	, ,		teaching (lectures)	Tutorial	/ Practical Lab	Other			
1	Introduction to machining	4	1	2	1	-			
2	Traditional methods of machining	4	1	2	1	-			
3	Non-traditional method of machining	4	1	2	1	-			
4	Introduction to metal forming	4	1	2	1	-			
5	Sheet metal forming	4	1	2	1	-			
6	Bulk forming, deep drawing	4	1	2	1	-			
7	Revision and Mid Exam								
8	Bulk forming, wire drawing	4	1	2	1	-			
9	Introduction to casting	4	1	2	1	-			

10	Expandable mould casting	4	1	2	1	-		
11	Permanent mould casting	4	1	2	1	-		
12	Gating system design	4	1	2	1	-		
13	Feeding system	4	1	2	1	-		
14	Revision	4	1	2	1	-		
15,16	Final Exam.							

Experiment Topics: (If any)

Serial	Experiment
1	Machining workshop (turning, shaping, milling and grinding)
2	Non-traditional methods of machining (video lab.)
3	Flow curve determination (compression and tension test)
4	Design of punch and die for blanking and piercing
5	Bulk forming, wire drawing and rolling (Video lab.)
6	Casting workshop, prepare a mould for pouring
7	Testing of sand casting, (Tension, compression and shear test of sand)

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10 %
2	Exam 2 written (Semester work)	9	10	10 %
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	Final Practical/Clinical/ Exam	13	10	10 %
6	Assignments / Project /Portfolio/ Logbook	6 & 10	10	10 %

6- Learning Resources and Supportive Facilities *

Learning resources (books, scientific references, etc.) *	The main (essential) reference (must be written in full according to the scientific documentation method)	Groover, M. P. "Fundamentals of modern manufacturing: materials, processes, and systems". John Wiley & Sons, 7 th edition (2019)
	Other References	Campbell, JS "Principles of Manufacturing Materials and Processes", McGraw Hill, New York, (2018).
,	Electronic Sources (Links must be added)	P. N. Rao, "Manufacturing Technology", McGraw-Hill, (2005)
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	NON
facilities &	Supplies	NON
equipment	Electronic Programs	NON
for	Skill Labs/ Simulators	NON
teaching	Virtual Labs	NON
and learning *	Other (to be mentioned)	Machining and Metal forming workshops, Casting foundry and sand Lab

	Course Coordinator	Program Coordinator
Name	Dr Abdou Abdallah	Dr. Ahmed Abdalbadia
Signature	School Well	المعساليديع

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Material Lab				
Course Code (according to the bylaw):	ENG 171				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)		<u>3</u>		<u>3</u>	
Course Type:	Compulsory				
The level to which the course was introduced:	SOPHOMORE				
Academic Program:	<u>Mechatror</u>	nics Engine	<u>eering</u>		
Institute:	Highe	r Technolo	gical Inst	itute	
Name of Course Coordinator:	Asso. prof	. Marwa E	lmahdy		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Safety Instructions- Mechanical properties of metals, tensile, compression, bending, torsion, shear, hardness, and impact tests.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	Program Outcomes (ARS) (according to the matrix in the program specs)	Course Learning Outcomes			
	A2,A4,B2,D4	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
		LO1	Explain basic concepts of mechanical properties of metals and alloys.		
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO2	Identify the various forms of material testing and its related terminology.		
		LO3	Perform standard laboratory/field tests according to established procedures		
A4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO4	Analyze testing results using appropriate engineering methods.		
B2	Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field	LO5	Design different samples for testing applications.		
D4	Estimate and measure the performance of an electrical/electronic/digital/mechanical/mechatronics	LO6	Evaluate different materials testing techniques.		
	system under specific input excitation and evaluate its suitability for a specific application.	LO7	Conduct practical experiments in the laboratory		

		following standard procedures
--	--	-------------------------------

4. Course Teaching and Learning Methods:

Dir Instru	uctio		Indirect Instruction							Information Technology- Assisted Learnin			-		
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V				V	V			V		V			

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours					
No.	(Course Topics)	Weekly	Theoretical	Trai	ning			
	• •	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Safety Instructions	3	0	0	3	-		
2	Mechanical properties of metals	3	0	0	3	-		
3	The tensile test	3	0	0	3	-		
4	Stress-strain diagram	3	0	0	3	-		
5	Fracture of metals	3	0	0	3	-		
6	Compression Test	3	0	0	3	-		

7	Revision and Mid Exam							
8	Hardness	3	0	0	3	-		
9	Hardness and hardness testing	3	0	0	3	-		
10	Impact tests	3	0	0	3	-		
11	Torsion, shear	3	0	0	3	-		
12	Fatigue test	3	0	0	3	-		
13	Fatigue test	3	0	0	3	-		
14	Revision for part 2	3	0	0	3	-		
15,16	Final Exam.							

Experiment Topics: (If any)

Serial	Experiment
1	Tensile test
2	Compression Test
3	Hardness Test
4	Impact tests
5	Torsion tests
6	Shear Test
7	Fatigue Test

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment	Marks/	Percentage	
	Assessment Methods "	Timing	Scores	of	

		(Week Number)		total course
				Marks
1	Exam 1 written (Semester work)	6	12.5	12.5 %
2	Exam 2 written (Semester work)	14	12.5	12.5 %
3	Midterm exam	7	30	30 %
4	Final Written Exam	15, 16	30	30 %
7	Assignments	2,3,4,5,10,12	5	5 %
8	Sheets	13	10	10 %

<u>6-</u> Learning Resources and Supportive Facilities *

	The main (essential) reference (must be written in full according to the scientific documentation method)	Strength of Materials (Mechanics of Solids) Author by S K Duggal and Arjun Prasad Latest Edition (2024)
Learning resources (books, scientific references,	Other References	Callister, William D. Materials Science and Engineering: An Introduction. John Wiley & Sons Australia, Ltd, 2021.
etc.) *	Electronic Sources (Links must be added)	Microsoft Team
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Data show- Laptops
facilities & equipment	Supplies	White boards
for	Electronic Programs	NoN
teaching	Skill Labs/ Simulators	NoN
and	Virtual Labs	NoN
learning *	Other (to be mentioned)	NoN

	Course Coordinator	Program Coordinator
Name	Asso. prof. Marwa Elmahdy	Dr Ahmed Abd elbadie
Signature	Cyter	Seranthis

المعهد التكنولوجي العالي - بالعاشر من رمضان

توصیف مقرر دراسي

1- معلومات أساسية:

	تشييد والبناء	اسم المقرر: (تبعا لما ورد باللائحة)		
	10	كود المقرر: (تبعا لما ورد باللائحة)		
	ة المدنية	قسم الهندس		القسم/الأقسام العلمية التي شاركت في التدريس:
نظري	عملي	اخري (تحدد)	إجمالي	إجمالي عدد الساعات المعتمدة للمقرر:
2	1		3	(تبعا لما ورد باللائحة)
	ي	اختيار		نوع المقرر:
	SOPH	OMORE		المستوى الدراسي الذي قدم فيه المقرر:
	لمدنية	الهندسة ا		البرنامج الأكاديمي:
	جي العالي	المعهد التكنولو		المعهد:
	لتر ساو <i>ي</i>	أ.د / شريف ا		اسم منسق المقرر:
	مي للبرنامج	جهة مناقشة واعتماد تقرير المقرر:		
	هر أغسطس	مجلس القسم ش		تاريخ اعتماد تقرير المقرر:

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

لمحة عن عملية البناء، الأحمال على المباني، مقاومة الأحمال، الخصائص الإنشائية للمواد، الأنظمة الإنشائية، الخصائص الحرارية للمواد، الخصائص المتعلقة بالحريق، مبادئ البناء المستدام. المواد وأنظمة البناء و المواد الإنشائية ، الجير، الأسمنت والخرسانة ، التربة؛ إنشاء الأساسات ، الأسقف، السلالم، أغطية الأرضيات.

3- <u>نواتج التعلم للمقرر:</u> اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر	مخرجات البرنامج / المعايير الأكاديمية المتبناة (التي يحققها المقرر تبعا للمصفوفة في توصيف البرنامج)				
شد الانتهاء من المقرر سيكون الطالب قادرا على	e	(A1, A4, A9, A10)			
النص	الكود	النص	الكود		
التعرف على أنواع المباني ومبادئ البناء المستدام وأنواع الرسومات المدنية والمعمارية.	LO1				
التعرف على دور الأساسات السطحية والعميقة، وأساليب فحص التربة وتصريف المياه الجوفية.	LO2	Time that it is the same of th			
وصف أنواع حديد التسليح وأنواع الأسمنت والخرسانة وأنواع تغطيات الأرضيات.	LO3	تحديد وصياغة وحل المشكلات الهندسية المعقدة من خلال تطبيق أساسيات الهندسة والعلوم			
دراسة أنواع البلاطات المختلفة، وحساب الأحمال المؤثرة عليها وسمكها	LO4	الأساسية والرياضيات			
التعرف على أنواع الطوب المختلفة وحساب الكميات المطلوبة للبناء.	LO5				
تطبيق الأكواد لاختيار نوع الأساس بناءً على الأحمال ونوع التربة، وتصميم وتنفيذ المنشآت الخرسانية.	LO6	الاستفادة من التقنيات المعاصرة وقواعد الممارسة والمعايير وإرشادات الجودة ومتطلبات	A 4		
تطبيق الإرشادات المعمارية في تصميم السلالم طبقًا للمواد والمساحات المتاحة.	LO7	الصحة والسلامة والقضايا البيئية ومبادئ إدارة المخاطر	A4		
تخطيط الموقع وتجهيزه لأعمال التنفيذ ما في ذلك تنفيذ الشدّات للعناصر الإنشائية و استلامها	LO8	استخدام التفكير الإبداعي والمبتكر والمرن واكتساب مهارات تنظيم المشاريع والقيادة لتوقع المواقف الجديدة والاستجابة لها	A9		
التعامل مع العطاءات والعقود والقضايا المالية للمشروعات	LO9	اكتساب وتطبيق المعرفة و التعلم الذاتي وغيرها من استراتيجيات التعلم	A10		

4 طرق التعليم والتعلم للمقرر:

	يس اشر	التدر المب	التدريس الغير مباشر				استراتيجيات التعلم بمساعدة تكنولوجيا المعلومات									
المحاضرات		التمارين العملية	العصف الذهنى	التعلم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير الأبحاث	الحوار والمناقشة	ائتدريب الميداني	الزيارات الميدائية	التعلم الذاتى	التطم بالإكتشاف	برامج المحاكاة أو التمذجة	المعامل الافتراضية	ميكروسوفت تيم	الذكاء الإصطناعي في التعليم
1	1	1													$\sqrt{}$	

الجدول الدراسى للمقرر:

لم المتوقعة	ساعات التع	315		إجمالي عدد	المحتوى العلمي للمقزر	رقم
أخرى (تحدد)	يب عملي	تدر تمارین	تدریس نظري	الساعات الأسبوعية	(موضّوعات المقرر)	الاسبوع الدراسي
	_	1	2	3	مقدمة	1
		1	2	3	خطوات البناء والرسومات المدنية والمعمارية والمواد الخرسانية	2
		1	2	3	حساب الكميات وأنواع الرسومات الهندسية	3
		1	2	3	العطاءات والتخطيط والإعداد للموقع	4
		1	2	3	طرق فحص التربة، الأساسات (الأساسات السطحية)	5
		1	2	3	أنواع الأساسات (الأساسات العميقة)	6
		، الدراسي	ف الفصل	امتحان منتص	مراجعة و	7
		1	2	3	التخلص من المياه الجوفية	8
		1	2	3	الشدات و إستلام الأساسات	9
		1	2	3	الشدات و إستلام الأعمدة	10
		1	2	3	الشدات و إستلام البلاطات	11
		1	2	3	نواع البلاطات وتوزيع الأحمال عليها وحساب السمك	12
		1	2	3	أنواع الطوب وحساب كميات المواد للبناء	13
		1	2	3	التصميم المعماري للسلالم	14
إختبارات الفصل الدراسي النهائية						

5- طرق تقييم الطلاب:

النسبة المئوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	م
%10	10	3	امتحان 1 تحريري (أعمال سنة)	1
%10	10	12	امتحان 2 تحريري (أعمال سنة)	2
% 20	20	7	امتحان منتصف الفصل الدراسي	3
% 40	40	15 و 16	امتحان نهائي تحريري	4
%20	20	إسبوعيا	تمارین و أبحاث	5

6- مصادر التعلم والتسهيلات المادية:

-الكود المصري لميكانيكا التربة، اللجنة الدائمة للكودالمصرى، مركز بحوث الإسكان والبناء، القاهرة، 2024 -الكود المصرى لتصميم وتنفيذ المنشآت، اللجنة الدائمة للكود المصرى، مركز بحوث الإسكان والبناء القاهرة،2024	المرجع الأساسي للمقرر (لابد من كتابة البيانات كاملة وفقا لطريقة توثيق علمي)	
-الموسوعة الحديثة في تكنولوجيا تشييد المباني3م، فاروق عباس حيدر، منشاة المعارف،2006 موسوعة التنفيذ المعماري والانشائي، حسين محمد جمعة، اللجنة الدائمة، القاهرة،2005	المراجع الأخرى	مصادر التعلم (الكتب والمراجع العلمية وغيرها)
https://books-library.website/files/download- pdf-ebooks.org-1544385031Kk6O6.pdf الملحق الثاني للكود المصري	المصادر الالكترونية (لابد من إضافة الروابط)	*
EKB - Microsoft office www.researchgate.net www.engineeringcivil.com http://ocw.mit.edu/ General تشيد ترم الصيفى Microsoft Teams	المنصة التعليمية (لابد من إضافة الرابط)	
سبورة بيضاء ب- جهاز عرض	الأجهزة	التجهيزات التعليمية المساندة للتعليم والتعلم *

منسق البرنامج	منسق المقرر	
د. غادة نشأت محمد	أ.د/ شريف حسين الترساوي	الإسم
citini issle	Phi-Pi	التوقيع

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Principles of engineering electrical				
Course Code (according to the bylaw):	EEC 101				
Department/s that participated in the teaching:	Electrical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>2</u>	<u>1</u>		<u>3</u>	
Course Type:	Compulsory				
The level to which the course was introduced:	SOPHOMORE				
Academic Program:	ALL ENGINEERING PROGRAMS				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr.Eslam Mansour				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			rtment	
Course Specification Approval Date:	8/11/2025				

2. Course Overview (Brief summary of scientific content):

Basic Concepts: Voltage, current, power, and energy, Independent and dependent voltage and current sources. DC Circuits Analysis: Ohms law, Kirchhoff's current and voltage laws. Series and parallel DC circuit's analysis, nodal analysis, and mesh analysis. Superposition, source transformation, and maximum power transfer theorems, Thevenin's and Norton's theorems. Capacitance and Inductance: series and parallel connections of capacitors and inductors. AC Circuits Analysis: Sinusoidal sources, r. m. s. value, phasor representation, complex impedances, Kirchhoff's laws in the phasor domain, parallel and series AC circuits. Experiments will be conducted to support the course including the use of computer software for circuit analysis.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	rogram Outcomes (NARS) ng to the matrix in the program specs)		Course Learning Outcomes
	(A1, A2, A3)	Upon com	pletion of the course, the student will be able to:
Code	Text	Code	Text
A 1	A1. Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	LO.1	Calculate the voltage difference and current intensity through any device in a complex circuit.
A 2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO.2	Ability to use Spice simulator to calculate the current and voltage drop through any element.
	Apply engineering design processes to produce cost-effective solutions that meet specified needs with	LO.3	Determine the optimal load of a two-terminal circuit (that absorbs the maximum power).
А3	consideration for global, cultural, social, economic,	LO.4	Choose the suitable load for a predefined phase shift between the AC voltage and current.
A3	environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO.5	Check the ability of a circuit component to be connected in a circuit without be overheated.

4. Course Teaching and Learning Methods:

Dir Instru		Indirect Instruction						r	Inforn Fechn sisted	ology	-				
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
1	V	V	√		√	V	V			√					

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly Hours	Theoretical	Tra	ining		
	• •	Hours	teaching (lectures)	Tutorial	/ Practical Lab		
1	Basic Concepts: Voltage, current, power, and energy, Independent and dependent voltage, and current sources.	3	2	1			
2	Ohms law, Kirchhoff's current and voltage laws. Series and parallel DC circuit's analysis.	3	2	1			
3	Nodal analysis, and mesh analysis.	3	2	1			
4	Superposition, and source transformation.	3	2	1			
5	Maximum power transfer theorems, Thevenin's and Norton's theorems.	3	2	1			
6	Capacitance and Inductance: series and parallel connections of capacitors and inductors.	3	2	1			
7	Revision a	and Mid	Exam				

8	Phasor representation, complex impedances.	3	2	1						
9	Kirchhoff's laws in the phasor domain.	3	2	1						
10	Parallel and series AC circuits.	3	2	1						
11	Parallel and series AC circuits.	3	2	1						
12	Parallel and series AC circuits.	3	2	1						
13	Parallel and series AC circuits.	3	2	1						
14	General Revision.	3	2	1						
15,16	Final Exam.									

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Final Exam (written)	15th	40	40 %
2	Midterm written Exam (Term Work)	7th	20	20 %
5	Quizzes/reports/presentation	6th &11th/	40	40 %
	(Term Work)	during the		
		semester		

6- Learning Resources and Supportive Facilities *

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	Electric Circuits", James W. Nilsson, Susan Riedel, Eleventh edition, Global Edition-Pearson 2019
resources (books, scientific	Other References	Fundamentals of electric circuits", Charles K. Alexander, Matthew N. O. Sadiku, fifth edition, McGRAW-HILL, 2013.
references, etc.) *	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office

Supportive	Supplies	White board, Projector and Microsoft teams.
facilities & equipment for teaching and learning *	Skill Labs/ Simulators	

	Course Coordinator	Program Coordinator
Name	Dr. Eslam Mansour	Ass.Prof.Dr. Taghreed Saied
Signature	eslam mansour	taghreed said

Higher Technological Institute (HTI) - 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Principles of Electronics Engineering						
Course Code (according to the bylaw):	EEC 102						
Department/s that participated in the teaching:	Electrical	Engineerir	<u>ng</u>				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total			
(according to the bylaw)	<u>2</u>	<u>1</u>		<u>3</u>			
Course Type:		Elect	ive				
The level to which the course was introduced:		JUNI	OR				
Academic Program:	ALL ENGI	NEERING	PROGRAM	<u>1S</u>			
Institute:	Highe	r Technolo	gical Inst	itute			
Name of Course Coordinator:	Dr. I	Eslam Samy	El-Mokad	em			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department						
Course Specification Approval Date:		8/11/2	025				

2. Course Overview (Brief summary of scientific content):

Revisions on: Semiconductor physics. P-n junction; I-V characteristics, Reverse saturation current depletion layer capacitance, Diffusion capacitance, Diode applications. half-and full-wave rectifier, Peak rectifier, Voltage doublers, Other two-terminal devices; Zener diodes, Metal-semiconductor junction, heterojunction and Ohmic contacts, Schottky barrier diodes, Bipolar Junction transistor (BJT), Static and dynamics characteristics, Field effect transistors, JFET models and biasing, FET application; MOSFET principles of operation, MOSFET as a

resistance. Verification of transistor Characteristics – Verification of different configurations of the transistor amplifiers (common emitter – common base – common collector)- Verification of MOSFET configuration and measuring the different parameters.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	Program Outcomes (ARS) ag to the matrix in the program specs)		Course Learning Outcomes
	A1, A2, A3	Upon com	oletion of the course, the student will be able to:
Code	Text	Code	Text
A 1	A1. Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	LO1	Use the principles of semiconductor materials, PN junction, diode theory and diode equivalent circuit in calculating voltages and currents in circuits.
A2	A2. Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO2	Analyze the performance of half and full wave rectifier circuits from points of Efficiency and ripple factor
		LO3	Construct clipping and clamping circuits using diodes and Zener diodes to use it in wave shaping
А3	Apply engineering design processes to produce cost-effective solutions that meet specified needs with	LO4	Design voltage regulator circuits using Zener diodes under different conditions.

consideration for global, cultural social, economic, environmental ethical, and other aspects appropriate to the discipline at	al, as	Design power supply circuit
within the principles and contex of sustainable design and development	ts LO6	Recognize transistor parameters and characteristics to make DC analysis for transistor circuits

4. Course Teaching and Learning Methods:

Dir Instru		Indirect Instruction						Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
	V	V	V		V	V	V			V		V		V	

Course Schedule:

Week	Scientific content of the course	Total Weekl	Expected r	number of th Hours	e Learning
No.	(Course Topics)	y Hour	Theoretical	Tra	nining
		s	teaching (lectures)	Tutorial	Lab / Practical
1	Semiconductor Materials	3	2	1	0
2	P.N Junction	3	2	1	0
3	Diode Theory	3	2	1	0
4	Diode circuits application (Half wave rectifiers)	3	2	1	0
5	Diode circuits application (Full wave rectifiers)	3	2	1	0

6	Diode circuits application (Clippers circuits)	3	2	1	0					
7	Revisio	Revision and Mid Exam								
8	diodes characteristics and Zener applications	3	2	1	0					
9	Principles of operation for Bipolar junction transistors (BJT)	3	2	1	0					
10	Principles of operation for Bipolar junction transistors (BJT)	3	2	1	0					
11	BJT common modes	3	2	1	0					
12	for operation of Principles JFET transistor	3	2	1	0					
13	Principles of operation for MOSFET	3	2	1	0					
14	Principles of operation for MOSFET	3	2	1	0					
15,16	Final Exam.									

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10%
2	Exam 2 written (Semester work)	10	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/	4,6,11,12	20	20%
	Logbook			

6- Learning Resources and Supportive Facilities *

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	Microelectronic Circuits-Oxford "Adel Sedra, , 8th-Edition,2020."University Press	
	Other References	Electronic-"Robert Boylestad,Louis Nashelsky, ,11th-Edition,2014. "Devices-and-Circuit-Theory	
scientific references, etc.) *	Electronic Sources (Links must be added)	Available Presentation (handed to students part by part on the Microsoft teams course class.	
eic.)	Learning Platforms (Links must be added)	EKB - Microsoft office	

Supportive	Supplies	White board, Projector and Microsoft teams.
facilities & equipment for teaching and learning *	Skill Labs/ Simulators	Proteus or Multisim.

	Course Coordinator	Program Coordinator
Name	Dr. Eslam Samy EL- Mokadem	Assistant Prof. Taghreed Saied
Signature	Dr. Eslam Samy EL-Mokadem	taghreed said

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Principles of Electric Machines				
Course Code (according to the bylaw):	EEC 103				
Department/s that participated in the teaching:	Electrical	Engineerir	<u>ng</u>		
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>2</u>	<u>1</u>		<u>3</u>	
Course Type:		Elect	ive		
The level to which the course was introduced:		SOPHO	MORE		
Academic Program:	ALL ENGI	NEERING	PROGRAN	<u>1S</u>	
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Assoc. Prof. Dr. Taghreed Said				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date: 8/11/2025					

2. Course Overview (Brief summary of scientific content):

Elements of Electric Drives, DC motor drives including conventional, brushless and modern permanent magnet motors; AC motor drives including induction and synchronous motors. Magnetic Circuits: Magnetic equivalent circuit, analogy with electric circuits, losses, linear and non-linear magnetic circuits calculations. Transformers: Single phase transformers, principle of operation, equivalent circuit, equivalent parameters determination, three phase transformers, connections of transformers, autotransformers, harmonics, Principles of operation of DC machines.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	rogram Outcomes (NARS) ng to the matrix in the program specs)	Course Learning Outcomes				
(A1, A2, A3)		Upon com	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text			
	Identify, formulate, and solve	LO1	Identify concepts of magnetic circuit analysis and electromechanical energy conversion principles.			
A 1	complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	LO2	Recognize operation Principles of electrical transformers and DC machines.			
		LO3	Conclude the equivalent circuit parameters of transformers and DC machines.			
	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO4	Illustrate performance curves of transformer and DC machines			
A2		LO5	Select the analysis methods of transformer and DC machines problems.			
		LO6	Assess and evaluate the performance characteristics of electrical machines.			
А3	Apply engineering design processes to produce cost- effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development	LO7	Apply the acquired knowledge and modern tools to develop modern-day applications out of these machines according to their unique characteristics			

4. Course Teaching and Learning Methods:

Dir Instru			Indirect Instruction						Information Technology- Assisted Learning			-			
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
	V	V			V	V	V			V					

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly Hours	Theoretical	Training			
		Hours	teaching (lectures)	Tutorial	Lab / Practical		
1	Magnetic circuit analysis	3	2	1	0		
2	Magnetic circuit analysis	3	2	1	0		
3	single-phase transformers construction, theory of operation, transformation ratios of voltage and current.	3	2	1	0		
4	single-phase transformers equivalent circuit.	3	2	1	0		
5	phasor diagram and voltage regulation of single-phase transformer.	3	2	1	0		
6	losses, efficiency, and daily efficiency of single-phase transformer.	3	2	1	0		
7	Revision and Mid Exam						

8	single-phase transformer tests	3	2	1	0		
9	single-phase transformer classification, and applications.	3	2	1	0		
10	Electromechanical energy conversion principles.	3	2	1	0		
11	DC generators construction, types, and the theory of operation	3	2	1	0		
12	DC generators equivalent circuit, EMF equations, Power flow, efficiency and applications.	3	2	1	0		
13	DC motors construction, types, EMF and torque equations and the theory of operation.	3	2	1	0		
14	DC motor characteristics, starting, types of starters, speed control, braking and testing of all types of DC machines)	3	2	1	0		
15,16	Final Exam.						

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Quiz 1 written (Semester work)	4	10	10%
2	Quiz 2 written (Semester work)	10	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
5	Final Practical/Clinical/ Exam		0	
6	Final Oral Exam		0	
7	Assignments / Project /Portfolio/	During	20	20%
	Logbook	Semester		
8	Field training		0	
9	Other (Mention)		0	

<u>6-</u> Learning Resources and Supportive Facilities *

Learning	The main (essential) reference	1- Fitzgerald & Kingsley's Electric Machinery, 7th Edition, Stephen Umans, 2014
resources (books, scientific	(must be written in full according to the scientific documentation method)	2- B. L. Theraja and A. K. Theraja " Text Book of Electrical Technology " volume-1, S. CHAND & COMPANY LTD, New Delhi, 2014.

references, etc.) *		3- U.A. Bakshi and V. U. Bahshi "Electrical Technology", Technical Publications, Pune, India, 2020.
	Other References	
	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Data Show
facilities &	Supplies	White board
equipment for	Electronic Programs	
teaching	Skill Labs/ Simulators	
and	Virtual Labs	
learning *	Other (to be mentioned)	

	Course Coordinator	Program Coordinator
Name	Assoc. Prof. Dr. Taghreed Said	Assoc. Prof. Dr. Taghreed Said
Signature	taghreed said	taghreed said

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Principles of Power Mechanical Engineering			
Course Code (according to the bylaw):	ENG 104			
Department/s that participated in the teaching:	Mechanica	l Engineer	ing	
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	2	1		3
Course Type:	Compulsory			
The level to which the course was introduced:	SOPHOMORE			
Academic Program:	Mechanica	l Engineer	ing	
Institute:	High	er Techno	logical Ins	titute
Name of Course Coordinator:	Ass	o. Prof. Dr.	Amr Hass	aan
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The div	ision council	minute of dep	artment
Course Specification Approval Date:		8/12	/2025	

2. Course Overview (Brief summary of scientific content):

First Law of Thermodynamics - Energy conversion - Power cycles - principles of fluid mechanics - Prime movers(Gasoline & Diesel Engines) - Pumps & Turbines Principles of heat transfer - Simple steam plants - Refrigerators.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS).

	Program Outcomes (NARS) ing to the matrix in the program specs)		Course Learning Outcomes	
(A1, A2, A3)		Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
A 1	Identify, formulate, and solve complex engineering problems by		Identify common gauges used in fluid mechanics, such as barometers, manometers, Bourdon gauges, and flowmeters.	
A1	applying engineering fundamentals, basic science and mathematics.	LO2	Describe representative engineering problems and explain the working principles of relevant mechanical systems.	
	Develop and conduct appropriate	LO3	Demonstrate the application of Bernoulli's equation and analyze the effect of a jet on a stationary plate.	
A2	experimentation and/or simulation, analyse and interpret data, assess, and evaluate findings,	LO4	Analyze the physical properties and practical behavior of fluids through experimentation.	
	and use statistical analyses and objective engineering judgment to draw conclusions.	LO5	Distinguish between various applications involving fluid machinery using fundamental fluid mechanics principles.	
	Apply engineering design processes to produce costeffective solutions that meet	LO6	Select the appropriate type of flowmeter based on application requirements.	
A3	specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to	LO7	Apply fluid mechanics principles to the design of pressure vessels, such as circular cylinders and spheres, used in industry.	
	the discipline and within the principles and contexts of sustainable design and development.	LO8	Demonstrate logical, creative, and comparative thinking to solve unfamiliar engineering problems.	

4. Course Teaching and Learning Methods:

Dire Instru		Information Indirect Instruction Technology- Assisted Learning													
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
√	√	V			V	√	√								1

Course Schedule:

Week	Scientific content of the course (Course Topics)	Total	Expected number of the Learning Hours			
No.		Weekly Hours	Theoretical	Tra	ining	
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	
1	-Introduction to power mechanical engineering.	3	2	1	-	
2	-Short summary of the basics.	3	2	1	-	
3	-Heat energy and modes of heat transfer	3	2	1	-	
4	Thermal expansion types	3	2	1	-	
5	Describes fluid pressure, together with buoyancy and hydrostatic stability. Define Archimedes principles	3	2	1	-	
6	Know gauges used in fluid mechanics, such as barometers, manometers.	3	2	1	-	
7	Revision and Mid Exam					
8	Bourdon pressure and vacuum gauges.	3	2	1	-	
9	Categories of flowmeters.	3	2	1	-	

10	Demonstrates Bernoulli's equation and the impact of a jet on a stationary plate.	3	2	1	-	
11	Identify relationships that exist between pressure, volume and temperature in a gas are given in a set of laws called the gas laws.	3	2	1		
12	States the types of combustion engines and names the components of internal combustion engines.	3	2	1	,	
13	Identify how the steam power plant works.	3	2	1	-	
14	Basic refrigeration cycle.	3	2	1		
15,16	Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	5	20	20 %
2	Exam 2 written (Semester work or quiz)	10	20	20 %
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %

6- Learning Resources and Supportive Facilities *

	The main (essential) reference (must be written in full according to the scientific documentation method)	-Bird & Carl Ross, "Mechanical Engineering Principles" Routledge 4 th Ed., 2019.
Learning resources (books, scientific references, etc.) *	Other References	 B.R. Munson, D.F. Young, T.H. Okiishi, and W.W. Huebsch, Fundamentals of Fluid Mechanics, John Wiley and Sons Inc., 9th Ed., 2021. R. E. Sonntag, C. Borgnakke and G. J. Van Wylen, Fundamentals of thermodynamics, John Wiley and sons Inc., 2009.
	Electronic Sources (Links must be added)	NA
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Data-show and Laptop
facilities &	Supplies	White board

equipment	Electronic Programs	Microsoft teams
for	Skill Labs/ Simulators	NA
teaching	Virtual Labs	NA
and learning *	Other (to be mentioned)	NA

	Course Coordinator	Program Coordinator
Name	Associate Prof. Amr Hassaan	Dr. Mohamed Ashraf
Signature	فمرورك	Gils

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Field Training 1				
Course Code (according to the bylaw):	FTR 131				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)		<u>18</u>		<u>18</u>	
Course Type:	Compulsory				
The level to which the course was introduced:	SOPHOMORE				
Academic Program:	Mechatronics Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Assoc. Prof. Dr. Mona A. Younis				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

This is specialized training in which the students spend their training period in any engineering institution, firms or training centers. Students should demonstrate the professional and practical skills they acquired during discussion with examination committee

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)			Course Learning Outcomes
A4, A7, A8, A10, D1, B4		Upon	completion of the course, the student will be able to:
Code	Text	Code	Text
A5	Practice research techniques and methods of investigation as an inherent part of learning.	LO1.	Write a technical report for the field training.
A7	Function efficiently as an individual and as a member of multi-disciplinary and multi-cultural teams.	LO2.	Develop new skills and obtaining knowledge to handle unfamiliar tasks more effectively in the future.
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools	LO3.	Integrate academic knowledge with practical experience gained during training.
A9	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO4.	Recognize the value of work, time, and teamwork, and professional attitudes revealing.
В4	Adopt suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and maintain mechanical equipment and systems	LO5.	Identify the tools required for different mechatronics components examination.
D1	Integrate a wide range of analytical tools, techniques, equipment, and software pacakage to design and develop mechatronics systems	LO5.	Apply national and international standards and codes in engineering practice.

4. Course Teaching and Learning Methods:

Instr	Direct Instructio n		Indirect Instruction					7	Inform Fechn isted	ology	-				
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V				V	√		$\sqrt{}$	V	1				

Course Schedule:

	Scientific content of the course	Total	Expected number of the Learning Hours			
Week No.	(Course Topics)	Weekly	Theoretical	Tra		
	,	Hours	teaching (lectures)	Tutorial	Practical /Lab	
	Train on the overall mechanical process					
	Train on reading overall flowsheet of the process Train on reading overall flowsheet of the process	18				
As	Midterm Report and Oral Exam					
scheduled	Carry out research using granted internet sites for references related to student's 2 training process					
	Write technical report					
		Final	Exam.			

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Attendance		10	10%
2	End of term Oral exam		30	30%
3	Midterm Report (Term Work)	As scheduled	20	20 %
4	Final Report (written)	AS scheduled	20	20 %
5	Follow up		20	20 %

6- Learning Resources and Supportive Facilities *

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	Depend on the case/ technical writing booking
(books, scientific	Other References	Hand out to students one by one
references, etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	NON
facilities & equipment	Supplies	NON
for	Electronic Programs	NON
teaching	Skill Labs/ Simulators	NON
and learning *	Virtual Labs	NON
	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Assoc. Mona A. Younis	Dr. Ahmed Abdelbadea
Signature	MONA A. YOUNIS	Paraullus

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Automotive Engineering				
Course Code (according to the bylaw):	AUT E73				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>4</u>	<u>0</u>	<u>0</u>	<u>4</u>	
Course Type:	Elective				
The level to which the course was introduced:	SENIOR 1				
Academic Program:	Mechatronics Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Hossam ramadan				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	Approval Date: 8/12/2025				

2. Course Overview (Brief summary of scientific content):

Introduction, mechanics of pneumatic tires performance of road vehicles (tractive effort, road resistance, AUTrodynamic resistance, other motion resistance, acceleration, speeding up distance &time, grad, ability, fuel economy, braking, ABS), vehicle handling (controllability & stability), vehicle ride.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acco	Program Outcomes (ARS) ording to the matrix in the program specs)	C	Course Learning Outcomes
	A2& A4& A10 & D2 & D4	Upo	n completion of the course, the student will be able to:
Code	Text	Code	Text
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO1	Develop appropriate experimental setups and/or simulations to assess automotive systems such as vehicle dynamics, braking, and fuel efficiency.
A 4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO2	Explain the fundamentals of vehicle dynamics including tireroad interaction
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO3	Evaluate advancements and best practices in ride comfort and dynamic performance.
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design.	LO4	Compute tractive effort, resistance forces, acceleration, grade ability, and fuel economy of vehicles.
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO5	Assess braking dynamics including ABS operation and performance characteristics.

4. Course Teaching and Learning Methods:

Direct Instructio n	Indirect Instruction	Information Technology- Assisted Learning
---------------------------	----------------------	---

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
				V	V	V	V			V		$\sqrt{}$			

Week	Scientific content of the course	Total	Expected	Expected number of the Learning Ho				
No.	(Course Topics)	Weekly Hours	Theoretical	Trai				
		Hours	teaching (lectures)	Tutorial / Practical Lab		Other		
1	Introduction, (types of automobiles, layout of automobile aggregates)	3	1	2	-	1		
2	transmission system (Friction clutches, and torque converter)	3	1	2	-	-		
3	transmission system (manual FWD, RWD and automated manual transmission)	3	1	2	-	-		
4	Dual mass flywheel and dual manual transmission, power shafts, joints, final drive, and differential	3	1	2	-	1		
5	transmission system (automatic and continuous variable transmission)	3	1	2	-	1		
6	automobile frames (classifications and construction)	3	1	2	-	-		
7								
8	Vehicle wheels and tire types and construction	3	1	2	-	-		
9	Suspension systems and axles (different types and construction (rigid & independent)	3	1	2	-	-		
10	Steering system (automobile steering mechanism types, transmission	3	1	2	-	-		
11	brakes systems (hydraulic & air brakes), components and operation.	3	1	2	-	-		
12	Advanced technologies of suspension, steering, braking systems.	3	1	2	-	-		

13	Front wheel angles.	3	1	2	-	-
14	Revision.	3	1	2	-	-
15,16		Fina	l Exam.			

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	6	10	10%
2	Exam 2 written (Semester work)	10	15	15%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	5	15	15%

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	Road and Off-Road Vehicle System Dynamics Handbook (2022) Author: Gianpiero Mastinu, Manfred Ploechl			
scientific references,	Other References				
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office			
Supportive	Devices/Instruments	Laptop			
facilities &	Supplies	non			
equipment for teaching	Electronic Programs	MATLAB/Simulink (Vehicle Dynamics Toolbox) MS-Excel-based computation model			
and	Skill Labs/ Simulators	non			
learning *	Virtual Labs	non			
	Other (to be mentioned)	non			

	Course Coordinator	Program Coordinator				
Name	Dr. Hossam Ramadan	Dr. Ahmed Abdalbadia				
Signature	Hossam Ramadan	Resulling				

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Automotive Technology				
Course Code (according to the bylaw):	AUT E71				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>4</u>	<u>0</u>	<u>0</u>	4	
Course Type:		Elect	ive		
The level to which the course was introduced:		SENIC	OR 1		
Academic Program:	Mechatron	nics Engin	<u>eering</u>		
Institute:	Highe	r Technolo	ogical Inst	itute	
Name of Course Coordinator:	Dr. Hossai	m ramadaı	<u>n</u>		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:		8/12/2	2025		

2. Course Overview (Brief summary of scientific content):

Introduction, automobile engine, transmission layout, classification of heat engines, operating cycle's of I.C.E, basic terms and definitions construction of engine parts, fuels system of spark ignition engines, fuel system of compression engines, lubrication system, and cooling system. Battery, charging system, starting systems, ignition systems (classical, transistorized, electronic, computer controlled; etc.), lighting and signaling systems - modern trends. (types of automobiles, layout of automobile aggregates), transmission system (clutch, gear box, power shafts & joints, final drive and differential.), frame (types and construction of automobile

frames.), suspension & axles (different types and construction (rigid & independent), wheel and tires), steering system (automobile steering mechanism types, transmission & operation, Front wheel angles, definition and function), brakes (hydraulic & air brakes), construction and operation).

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(ac	Program Outcomes (ARS) coording to the matrix in the program specs)	Course Learning Outcomes				
		Upon	completion of the course, the student will be able to:			
Code	Text	Code	Text			
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO1	Identify electrical systems such as starting, charging, lighting, and electronic ignition systems.			
A 4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO2	Explain the construction, functions, and operating cycles of internal combustion engine systems.			
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO3	Investigate and report on recent developments and trends in automotive technologies.			
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design.	LO4	Demonstrate knowledge of chassis components including transmission, suspension, and steering mechanisms.			
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO5	Analyze different fuel, lubrication, ignition, and cooling systems used in automobiles.			

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Indirect Instruction							Information Technology- Assisted Learning						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
V	V	V		V	V	V	$\sqrt{}$			V					V

Week	Scientific content of the course	Total	Expected	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly Hours	Theoretical	Trai				
	(Communication)		teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Introduction to Automotive Systems and Vehicle Layouts	4	2	2	0	-		
2	Classification and Operating Cycles of Heat Engines	4	2	2	0	-		
3	Engine Components and Construction	4	2	2	0	-		
4	Fuel Systems in SI and CI Engines	4	2	2	0	-		
5	Lubrication and Cooling Systems	4	2	2	0	-		
6	Battery, Charging, and Starting Systems	4	2	2	0	-		
7	R	evision a	and Mid Exa	m				
8	Ignition Systems (Conventional and Modern)	4	2	2	0	LO1		
9	Lighting and Signaling Systems	4	2	2	0	-		
10	Clutch, Gearbox, Power Shafts & Differential	4	2	2	0	•		

11	Automobile Frame, Suspension, and Axles	4	2	2	0		
12	Steering Systems and Front Wheel Geometry	4	2	2	0	-	
13	Braking Systems: Hydraulic & Air Brakes	4	2	2	0	-	
14	Modern Trends in Automotive Technology	4	2	2	0	-	
15,16	Final Exam.						

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	13	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-13	20	20%

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	"Automotive Technology: A Systems Approach" (7th Edition, 2020) Authors: Jack Erjavec, Rob Thompson
(books, scientific	Other References	
references, etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Laptop
facilities &	Supplies	
equipment for	Electronic Programs	GT-Power, AVL Cruise, or Simulink models for ICE
teaching	Skill Labs/ Simulators	NON
and	Virtual Labs	NON
learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Dr. Hossam Ramadan	Dr. Ahmed Abdalbadia
Signature	Hossam Ramadan	Paraulling

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Theory of Internal Combustion Engine				
Course Code (according to the bylaw):	AUT E72				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>4</u>	<u>0</u>	<u>o</u>	<u>4</u>	
Course Type:	Elective				
The level to which the course was introduced:		SENIC	OR 2		
Academic Program:	Mechatronics Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Hossam ramadan				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	AUG.2025				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Thermodynamics of ideal cycles, thermodynamics analysis of actual cycle, thermal calculation of I.C.E., parameters characterizing the work cycle and economy, thermal balance of I.C.E., mixture formation in S.I. engine, combustion in S.I. engines, combustion in C.I. engines, mixture creation in C.I. engines, engines performance characteristics.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acco	Program Outcomes (ARS) ording to the matrix in the program specs)	Course Learning Outcomes		
	A2&A4&A10&D2&D4	Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO1	Analyze thermodynamic cycles useingin internal combustion engines, both ideal and actual.	
A 4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO2	Explain the physical processes of mixture formation and combustion in SI and CI engines	
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO3	Investigate emerging technologies and researching trends in combustion and engine thermal systems	
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design.	LO4	Evaluate and comparing performance characteristics of various types of I.C. engines.	
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO5	Perform thermal calculations and evaluating engine performance parameters (efficiency, power, losses)	

4. Course Teaching and Learning Methods:

Direct		Information
Instructio	Indirect Instruction	Technology-
n		Assisted Learning

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
V	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$					$\sqrt{}$

Week	Scientific content of the course	Total	Expected	number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Trai				
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Introduction and Thermodynamics of Ideal Cycles (Otto, Diesel, Dual)	4	2	2	0	-		
2	Thermodynamic Analysis of Actual Engine Cycles	4	2	2	0	•		
3	Deviations from Ideal Cycles & Loss Mechanisms	4	2	2	0	-		
4	Thermal Calculations of I.C. Engines	4	2	2	0	-		
5	Parameters Characterizing Engine Work & Economy	4	2	2	0	-		
6	Thermal Balance of I.C.E. (input/output energy analysis)	4	2	2	0	-		
7	R	evision a	nd Mid Exa	m				
8	Mixture Formation in Spark Ignition (SI) Engines	4	2	2	0	-		
9	Combustion Process in SI Engines	4	2	2	0	-		
10	Combustion Process in Compression Ignition (CI) Engines	4	2	2	0	-		
11	Mixture Formation in CI Engines (Injection & Atomization)	4	2	2	0	-		

12	Performance Characteristics and Engine Testing	4	2	2	0		
13	Efficiency Maps, BSFC, Torque and Power Curves	4	2	2	0	-	
14	Modern Trends in Combustion Technology (e.g., GDI, HCCI, EGR, etc.)	4	2	2	0	-	
15,16	Final Exam.						

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	13	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-13	20	20%

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	Internal Combustion Engines: Applied Thermosciences (3rd Edition, 2021) Authors: Colin R. Ferguson, Allan T. Kirkpatrick
scientific references,	Other References	
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
	Devices/Instruments	Laptop
Supportive	Supplies	
facilities & equipment for teaching	Electronic Programs	MS Excel or Python for engine data analysis MATLAB/Simulink for cycle modeling
and	Skill Labs/ Simulators	NON
learning *	Virtual Labs	NON
	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Dr. Hossam Ramadan	Dr. Ahmed Abdalbadia
Signature	Hossam Ramadan	Paraulling

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Manufacturing Automation			
Course Code (according to the bylaw):	ENG E03			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>4</u>			4
Course Type:		Elect	ive	
The level to which the course was introduced:	SENIOR 1			
Academic Program:	<u>Mechatron</u>	ics Engine	<u>eering</u>	
Institute:	Higher Technological Institute			
Name of Course Coordinator:	Dr.Ahmed Abu El Fadl			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

The role of automation in manufacturing. Mechanization and automation. Robot types and configuration control systems, drive systems, programming methods, vision systems, identifying opportunities for reboting, specification, safety for robotic installation, economic factors and quality on machine performance.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)			Course Learning Outcomes		
A3,A9,D1,D4			Upon completion of the course, the student will be able to:		
Code	Text	Code	Text		
A3	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO1	Apply sustainable engineering design concepts to provide cost-effective and environmentally friendly automation solutions in production.		
A9	Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	LO2	Demonstrate creative problem-solving and entrepreneurial thinking in identifying and implementing automation opportunities in industrial settings.		
D1	Integrate a wide range of analytical tools , techniques , equipment , and software pacakage to design and develop mechatronics systems	LO3	Use programming and simulation tools in modeling, controlling, and analyzing robotic and automated manufacturing systems.		
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO4	determine the effectiveness and acceptability of automated systems and robotic setups, assess their performance under various operating scenarios.		

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Indirect Instruction Indirect Instruction Assisted Learning				-									
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V		V		V	V			V		V			V

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Trai	ining		
	-	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other	
1	Introduction to Manufacturing Automation	4	2	2	0	-	
2	Mechanization vs Automation	4	2	2	0	-	
3	Types of Industrial Robots and Configurations	4	2	2	0	-	
4	Robot Drive Systems (Electric, Pneumatic, Hydraulic)	4	2	2	0	-	
5	Control Systems and Architectures	4	2	2	0	-	
6	Robot Programming Methods	4	2	2	0	-	
7	Revision and Mid Exam						
8	Vision Systems in Manufacturing	4	2	2	0	-	

9	Safety Considerations for Robotic Installations	4	2	2	0	-
10	Identifying Opportunities for Robotic Automation	4	2	2	0	-
11	Cost Analysis and Economic Factors in Automation	4	2	2	0	-
12	Quality and Machine Performance Considerations	4	2	2	0	-
13	Case Studies and Emerging Trends	4	2	2	0	-
14	Final Presentations – Innovative Automation Solutions	4	2	2	0	-
15,16	Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	15	15%
2	Exam 2 written (Semester work)	12	15	15%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	10	10	10%

Learning resources (books, scientific	The main (essential) reference (must be written in full according to the scientific documentation method)	Automation, Production Systems, and Computer-Integrated Manufacturing (5th Ed., 2023) Author: Mikell P. Groover
references,	Other References	
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Laptop
facilities &	Supplies	
equipment for teaching	Electronic Programs	MATLAB/Simulink Automation Studio PLC programming software
and	Skill Labs/ Simulators	NON
learning *	Virtual Labs	NON
J	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Dr.Ahmed Abu El -FADl	Dr. Ahmed Abdalbadia
Signature	Ahmed fadl	Ensulling

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Design of Machine Elements			
Course Code (according to the bylaw):	ENG 271			
Department/s that participated in the teaching:	<u>Me</u>	chanical E	<u>ingineerin</u>	<u>a</u>
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>5</u>			<u>5</u>
Course Type:		Compu	lsory	
The level to which the course was introduced:		SENIC	OR 1	
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>	
Institute:	Higher Technological Institute			
Name of Course Coordinator:	Dr.Saleh S	obhy		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

Introduction, material and their properties, manufacturing technology, modes of fractures - Design of fasteners (riveting, welding, screwed joints), power screw, levers, shaft design, coupling- Gear design (Spur, Helical, Bevel, & worm), rolling bearings selection, sliding bearing design, flat and V-belt and pulley transmission.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes		
	A1,A3,A10, B 1, B 3	Upon	completion of the course, the student will be able to:	
Code	Text	Code	Text	
A1	Identify, formulate, and solve complex engineering problems by applying engineering		Identify key relationships in stress analysis calculations by applying the basics of machine design.	
AI	fundamentals, basic mechanics of materials	LO2	Distinguish between different types of stresses.	
A3	Apply engineering design processes to produce cost- effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO3	Apply suitable theories of mechanical design	
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	LO4	Analyze cost-related applications by searching for information to develop knowledge and skills that support life-long learning.	
	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat	LO5	Evaluate applications involving simultaneous operations and cost considerations using basic design concepts.	
B1	Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and	LO6	Determine design requirements for machine elements.	

	Analysis, Dynamics and Vibrations.		
na.	Select conventional mechanical equipment according to the required performance.	LO7	Select appropriate materials and design theories for machine elements.
В3		LO8	Select material processing methods according to the required performance.

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Indirect Instruction							Information Technology- Assisted Learning						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V		V	V		V	V		V	V					

Week	Scientific content of the course	Total	Expected number of the Learning Hours					
No.	(Course Topics)	Weekly	Theoretical	Trai	ining			
	• /	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Material and their properties, manufacturing technology	5	2	3	-	-		
2	Modes of fractures	5	2	3	-	-		
3	Failure Theories	5	2	3	-	-		

4	Design of fasteners	5	2	3	-	-				
5	Power screw	5	2	3	-	-				
6	Shaft design	5	2	3	-	1				
7	Revision and Mid Exam									
8	Complex stress on the shafts	5	2	3	-	-				
9	Gear design	5	2	3	-	-				
10	Gear design	5	2	3	-	-				
11	rolling bearings selection	5	2	3	-	-				
12	Sliding bearing design	5	2	3	-	-				
13	flat pulley transmission	5	2	3	-	-				
14	V-belt and pulley transmission	5	2	3	-	-				
15,16	Final Exam.									

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10 %
2	Exam 2 written (Semester work)	10	10	10 %
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	20	20 %

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	Robert L. Mott, "MachineElementsinMechanicalDesign", 6thEdition,Pearson,2018			
resources (books, scientific	Other References				
references, etc.) *	Electronic Sources (Links must be added)	MS.TEAMS			
etc.) "	Learning Platforms (Links must be added)	EKB - Microsoft office			
Supportive	Devices/Instruments	NON			
facilities & equipment	Supplies	NON			
for	Electronic Programs	NON			
teaching	Skill Labs/ Simulators	NON			
and	Virtual Labs	NON			
learning *	Other (to be mentioned)	NON			

	Course Coordinator	Program Coordinator
Name	Dr.Saleh Sobhy	Dr. Ahmed Abdalbadia
Signature	Saleh Sobhy	Paraulling

Higher Technological Institute (HTI) - 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Machine	Machinery Diagnosis & Condition Monitoring				
Course Code (according to the bylaw):		ENG	<u> 277</u>			
Department/s that participated in the teaching:	<u>Me</u>	chanical E	ngineerin	<u>a</u>		
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total		
(according to the bylaw)	<u>4</u>			<u>4</u>		
Course Type:	Elective					
The level to which the course was introduced:		SENIC	OR 1			
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>			
Institute:	Highe	r Technolo	ogical Inst	itute		
Name of Course Coordinator:	Assoc. Pro	of. Dr. Mon	na A. Youn	i <u>s</u>		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department					
Course Specification Approval Date:		8/12/2	025			

2. Course Overview (Brief summary of scientific content):

Study of periodic and random signals, statistical properties, auto and cross correlation and power spectral density- functions of commonly found systems, spectral analysis, Fourier transforms and fast Fourier transform algorithm; real time analyzers and discrete signals. Introduction to condition monitoring of machinery; vibration standards and monitoring procedures, use and selection of measurements, analysis procedures and instruments. Applications to rotating machinery, oil debris analysis, temperature analysis, Acoustic emission.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acco	Program Outcomes (ARS) rding to the matrix in the program specs)	Course Learning Outcomes				
	A3 , A5, B1,B3	Upon completion of the course, the student will be able to:				
Code	Text	Code	Text			
	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global,		Describe the different types of maintenance.			
			Identify the differences between maintenance and repair.			
A3	cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO3	Classify the various types of maintenance.			
A5	Practice research techniques and methods of investigation as an	LO4	Explain the duties of a maintenance engineer.			
	inherent part of learning.	LO4	Demonstrate maintenance planning and administration.			
В1	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations.	LO5	Identify the challenges of vibration monitoring.			
В3	Select conventional mechanical equipment according to the required performance.	LO6	Classify different types of vibration transducers.			

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Indirect Instruction						Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
V	V	V			V	$\sqrt{}$				V	V				

Week	Scientific content of the course	Total	Expected number of the Learning Hours						
No.	(Course Topics)	Weekly	Theoretical	Trai					
	• /	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other			
1	Introduction to maintenance	4	2	2	-	-			
2	Preventive maintenance	4	2	2	-	-			
3	Types of preventive maintenance	4	2	2	-	-			
4	Types of preventive maintenance	4	2	2	-	-			
5	Types of preventive maintenance	4	2	2	-	-			
6	Duties and responsibilities of production manager and production engineer.	4	2	2	-	-			
7	Revision and Mid Exam								
8	Duties and responsibilities of production manager and production engineer.	4	2	2	-	-			

9	Duties and responsibilities of production manager and production engineer.	4	2	2	-	-		
10	introduction to vibration	4	2	2	-	-		
11	Vibration monitoring	4	4	2	2	-		
12	Data acquisition vibration sensors	4	4	2	2	-		
13	Handheld vibration instruments	4	4	2	2	-		
14	revision	4	4	2	2	-		
15,16	Final Exam.							

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	10	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	10	10%
9	Other (presentation)	12	10	10%

Laamina	The main (essential) reference (must be written in full according to the scientific documentation method)	1- R.C.MISHRA, "RELIABILITY AND MAINTENANCE", 2008
Learning resources (books, scientific	Other References	2- GANG SHEN CHEN," HANDBOOK OF FRICTION VIBRATION INTERACTION, 2026
references, etc.) *	Electronic Sources (Links must be added)	Non
	Learning Platforms (Links must be added)	Non
Supportive	Devices/Instruments	Non
facilities &	Supplies	Non
equipment	Electronic Programs	Non

for teaching	Skill Labs/ Simulators	fault diagnosis equipment available in lab.			
and	Virtual Labs	Non			
learning *	Other (to be mentioned)	Non			

	Course Coordinator	Program Coordinator
Name	Assoc. Mona A. Younis	Dr. Ahmed Abdelbadea
Signature	MONA A. YOUNIS	Soventhia

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Renewable Energy				
Course Code (according to the bylaw):	MEC 257				
Department/s that participated in the teaching:	Me	chanical E	<u>ingineerin</u>	<u>a</u>	
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	4			4	
Course Type:		Elect	ive		
The level to which the course was introduced:	SENIOR 1				
Academic Program:	<u>Mechatron</u>	Mechatronics Engineering			
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Mohamed Salah				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Introduction, Renewable energies; Solar, wind, Biomass, geothermal, Tidal, Oceans wave, hydrogen. The sun structure, solar constant, collectors, collector performance, Heat removal factor. Applications, Design consideration of wind energy, site selection, available wind power, Applications, Biomass conversion to fuel, storage of energy. Economics.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	rogram Outcomes (ARS) ding to the matrix in the program specs)	(Course Learning Outcomes
			empletion of the course, the student will be able to:
Code	Text	Code	Text
A1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science		Identify a broad range of renewable energy interventions to address specific energy requirements, particularly related to solar, wind and hydro sources.
	and mathematics.	LO2	Evaluate the sustainability challenges of different renewable energy interventions.
A3	Apply engineering design processes to produce costeffective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO3	Utilize industry-standard modelling tools to develop basic renewable energy system models.
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	LO4	Analyze applications of renewable energy operations through independent information search to develop knowledge and life-long learning skills.
	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements,	LO5	Distinguish renewable energy applications analytically by applying fundamental concepts.
B1		LO6	Design practical renewable energy systems using appropriate methods and tools.

	Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations.		
	Select conventional	LO7	Select appropriate components for renewable energy systems based on performance requirements.
В3	mechanical equipment according to the required performance.	LO8	Apply suitable design methods for conventional solar collectors according to performance requirements.

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Information Indirect Instruction Assisted Learning					-								
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
V	V	V	V	V	V	V				V	V				V

Week	Scientific content of the course	content of the course Total		Expected number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Trai	ning	_		
	• •	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Introduction to the course. Sources of renewable energy.	4	2	2	-	-		
2	Available solar energy and solar constant.	4	2	2	-	-		
3	Types of solar collectors.	4	2	2	-	-		

4	Flat plate solar collector performance.	4	2	2	-	-
5	Solar heating systems.	4	2	2	1	-
6	Solar heating systems.	4	2	2	1	-
7	R	evision a	and Mid Exa	m		
8	Photovoltaic technology.	4	2	2	1	-
9	PV panel's structure.	4	2	2	1	-
10	PV system components.	4	2	2	1	-
11	PV system design.	4	2	2	1	-
12	Available wind energy.	4	2	2	1	-
13	Applications of wind energy.	4	2	2	1	-
14	Applications of wind energy.	4	2	2	-	-
15,16	Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10 %
2	Exam 2 written (Semester work)	11	10	10 %
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	0	20 %

Learning resources (books, scientific	1110 1114111 (0000111141) 1010101100	Sørensen, B. (2017) Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning. 5th edn. London: Academic Press.
---------------------------------------	--------------------------------------	--

references, etc.) *		Duffie, J.A., Beckman, W.A. and Blair, N. (2020) Solar Engineering of Thermal Processes, Photovoltaics and Wind. 5th edn. Hoboken, NJ: John Wiley & Sons.
	Other References	Le Gourieres, D. (1982) Wind Power Plants: Theory and Design. Oxford: Pergamon Press. S. P. Sukhatme, Solar Energy, Tata McGraw-Hill.(2008) A. E. Dixon, J. D. Leslie, Solar Energy Conversion, eBook (1797), ISBN: 9781483189284. G.Tully, Solar heating systems: Analysis and design with the Sun-Pulse method (An Energy learning systems book).(1981) Farah Ejaz Ahmed, Raed Hashaike, Nidal Hilal, Solar powered desalination — Technology, energy and future outlook, . Desalination 453 (2019) 54-76. John R. Howell, Richard B. Bannerot, Gary C. Vliet, Solar Thermal Energy Systems, eBook (1982), New York: McGraw-Hill, c1982.
	Electronic Sources (Links must be added)	None
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	None
facilities & equipment	Supplies	None
for	Electronic Programs	None
teaching	Skill Labs/ Simulators	None
and	Virtual Labs	None
learning *	Other (to be mentioned)	None

	Course Coordinator	Program Coordinator
Name	Dr. Mohamed Salah	Dr. Ahmed Abdalbadia
Signature	M.Salv	Paraullies

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Sensors and Actuators				
Course Code (according to the bylaw):	MTE 211				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	2	<u>2</u>		4	
Course Type:	Compulsory				
The level to which the course was introduced:	SENIOR 1				
Academic Program:	Mechatronics Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Ahmed Abu El Fadl				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	decision/minutes of the department The division council minute of department			artment	
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Introduction- sensors& transducers – Error analysis – Measurement s of displacement – Speed-Acceleration_ Force – Strain _ Heat _etc. Selection of sensors _ Signal conditioning- Actuators (Mechanical – Hydraulic _ pneumatics_ Electro-hydraulic _ Electro-pneumatic _ Electrical actuators- Selection of actuators). Example of a Mechatronics system (small course project).

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	Program Outcomes (ARS) (according to the matrix in the program specs)	Course Learning Outcomes			
	A2,A4,A10,D4	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO1	Identify the requirements and challenges of mechatronics systems related to sensors, actuators, and signal conditioning units.		
A4	Apply engineering design processes to produce cost- effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO2	Select appropriate sensors, actuators, and signal conditioning systems for specific applications based on functionality, performance, compatibility, and cost.		
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	LO3	Acquire knowledge of the structure and operation of various actuators, including mechanical, hydraulic, pneumatic, electrohydraulic, electropneumatic, and electrical actuators, and apply selection criteria.		
D4	Estimate and measure the performance of an electrical/electronic/digital/mechanical/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO4	Estimate the performance of mechatronics systems using different sensors and conduct error analysis.		

4. Course Teaching and Learning Methods:

Dir Instr	uctio		Indirect Instruction									7	Inforn Fechn isted	ology	-
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V	V			V	V			V				V	V

Week	Scientific content of the course		Expected	number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Trai				
	• •	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Introduction of sensors, actuators, signal conditioning	4	1	1	2	-		
2	Sensors and Transducers	4	1	1	2	-		
3	Sensor Terminology and Error Analysis	4	1	1	2	-		
4	Measurements of Displacements, speed, acceleration, strain, heat.	4	1	1	2			
5	Measurements of Temperature, light, force, and pressure.	4	1	1	2	-		
6	Selection of sensors	4	1	1	2	-		
7	Revision and Mid Exam							
8	Introduction of sensors, actuators, signal conditioning	4	1	1	2	-		
9	Sensors and Transducers	4	1	1	2	-		
10	Sensor Terminology and Error Analysis	4	1	1	2	-		

11	Measurements of Displacements, speed, acceleration, strain, heat.	4	1	1	2	-	
12	Measurements of Temperature, light, force, and pressure.	4	1	1	2	-	
13	Selection of sensors	4	1	1	2	-	
14	Introduction of sensors, actuators, signal conditioning	4	1	1	2	-	
15,16	Final Exam.						

Experiment Topics: (If any)

Serial	Experiment					
1	Introduction of temperature control system components					
2	How to select temperature sensor, Dc motor actuator					
3	Desin of small temperature control system with small structure					
4	Connect temperature sensor and d.c motor with small fan to structure					
5	Apply signal conditiong approporate for sensor					
6	Complete temperature control system					

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	10	0	10%
2	Exam 2 written (Semester work)	10	0	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	14	20	20%

Learning resources (books,	The main (essential) reference (must be written in full according to	 Alciator & Histand, "Introduction to Mechatronics & Measurements Systems";
scientific	the scientific documentation method)	McGraw-Hill, Second Edition, 2003

references, etc.) *	Other References	W. Bolton; "Mechatronics – Electronic Control Systems in Mechanical & Electrical Engineering.", Longman, latest edition ,2019.
	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	NI ELVIES-SENSORKIT
facilities & equipment	Supplies	POWER SUPPLY
for	Electronic Programs	LABVIEW
teaching	Skill Labs/ Simulators	NON
and	Virtual Labs	NON
learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Dr. Ahmed Abu El Fadl	Dr. Ahmed Abd El badii
Signature	Ahmed fadl	Sommers

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	to the bylaw): Programmable logic controller			<u>oller</u>
Course Code (according to the bylaw):	MTE 212			
Department/s that participated in the teaching:	Mechanical Engineering			<u>g</u>
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>2</u>	<u>2</u>		<u>4</u>
Course Type:		Compu	lsory	
The level to which the course was introduced:		SENIC	OR 2	
Academic Program:	<u>Mechatror</u>	nics Engine	<u>eering</u>	
Institute:	Higher Technological Institute			
Name of Course Coordinator:	DR.AHMEI	D SAMIR		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Structure and functions of PLCs, PLC H.W. components (center components, data processing, IOs, data communication,)- Review of logic fundamentals – Developing of fundamental PLC wiring diagrams and ladder diagrams- Basics of PLC programming languages - PLC programming, latching, internal relays, interlocking, Sequencing, Timers and counters, Shift registers, Master and jump controls, Data handling, Math instructions, & Analogue input / output., IEC 1131-3 programming languages- Basics of control safety and availability – Applications

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acc	Program Outcomes (ARS) ording to the matrix in the program specs)	Course Learning Outcomes		
	A1,A3,A5,D1,D2	Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
	Identify, formulate, and solve complex engineering problems by applying		Identify the appropriate equations required for the design and calculation of mechatronics systems.	
A 1	engineering fundamentals, basic science and mathematics.	LO2	Distinguish between different types of PLC systems and their applications.	
А3	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO3	Apply suitable methods in the design of PLC systems.	
A 5	Practice research techniques and methods of investigation as an inherent part of learning.	LO4	Analyze mechatronics system design applications by researching and integrating knowledge and skills.	
D1	Integrate a wide range of analytical tools, techniques, equipment, and software package to design and develop mechatronics systems	LO5	Distinguish analytically between applications involving mechatronics systems by applying fundamental concepts.	
		LO6	Design PLC systems to meet specific functional requirements.	
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific	LO7	Select appropriate PLC system components for different applications.	
	application; and identify the tools required to optimize this design	LO8	Select the suitable design methodology for PLC systems according to required performance criteria.	

4. Course Teaching and Learning Methods:

Dir Instru	uctio	Indirect Instruction				7	Inform Fechn isted	ology	-						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
		V				$\sqrt{}$	$\sqrt{}$								

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours			
No.	(Course Topics)	Weekly	Theoretical	Trai	ning	
	(Common of the Common of the C	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
1	Introduction to PLC system design	4	2	2	-	-
2	Introduction to PLC system design	4	2	2	-	-
3	PLC system components	4	2	2	-	-
4	Analysis of PLC system components	4	2	2	-	-
5	Selection hardware system components	4	2	2	-	-
6	Design of a hardware system	4	2	2	-	-
7	Revision and Mid Exam					
8	Basics of software	4	2	2	-	-

9	Timers	4	2	2	-	-
10	Counters	4	2	2	-	-
11	Design of PLC system	4	2	2	-	-
12	Experimental performance of PLCs system	4	2	2	-	-
13	Comparison of design aspects of different PLCs systems	4	2	2	-	-
14	Review of design aspects of different PLCs systems	4	2	2	-	-
15,16	Final Exam.					

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	15	15%
2	Exam 2 written (Semester work)	10	15	15%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	10	12	10%

6- Learning Resources and Supportive Facilities *

Learning resources (books, scientific references, etc.) *	The main (essential) reference (must be written in full according to the scientific documentation method)	Programmable logic controllers W.Bolton.
	Other References	Mechatronics the science of Intelligent machines . An International journal
	Electronic Sources (Links must be added)	
eic.j	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	NON
facilities &	Supplies	NON

equipment	Electronic Programs	NON
for	Skill Labs/ Simulators	NON
teaching	Virtual Labs	NON
and learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	DR.AHMED SAMIR	Dr. Ahmed Abdalbadia
Signature	AHMED	Summered

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	ording to the bylaw): Mechatronics Work			p
Course Code (according to the bylaw):	MTE 213			
Department/s that participated in the teaching:	<u>Me</u>	chanical E	ngineerin	<u>a</u>
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>1</u>	<u>3</u>		4
Course Type:		Compu	lsory	
The level to which the course was introduced:	SENIOR 1			
Academic Program:	Mechatron	ics Engine	eering	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	PROF.DR.	EMAN NAS	SSER	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

Safety Instructions - This workshop aims at building the ability to design, choose the necessary components, and implement small real tasks – Emphasis is on hand skill on preparing printed circuit boards (PCB)- drilling – Soldering – Checking – Use of CAD programs is highly encouraged – Example of the tasks, Power supply – H-Bridge – 555 timers - Schmitt Trigger – Small practical project – Introduction of Mechatronics applications in real life may be introduced (Automobiles, Air conditioning, or any other field).

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(accord	Program Outcomes (ARS) ding to the matrix in the program specs)	Course Learning Outcomes				
	A3,A6,A9,D1,D2	Upon completion of the course, the student will be able to:				
Code	Text	Code	Text			
А3	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO1	Apply the design of electronic circuits (e.g., a stable 555 timer for LED alarm) with focus on minimizing cost.			
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO2	Plan the process of designing electronic circuits.			
А9	Use creative, innovative and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	LO3	Develop flexible thinking and problem-solving skills by completing multiple mini-projects.			
D1	Integrate a wide range of analytical tools, techniques, equipment, and software pacakage to design and develop mechatronics systems	LO4	Design power supply circuits using EAGLE software.			

D2	Design, model and analyze an mechatronics system or component for a specific application; and identify the tools required to optimize this design	LO5	Design H-bridge circuits for directional control in various mechatronics subsystems.
----	---	-----	--

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Indirect Instruction						Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
V	V	V	V			V	V					V			

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours					
No.	(Course Topics)	Weekly	Theoretical	Trai	ning			
	•	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Introduction to PCB design and etching method.	4	1	-	3	-		
2	Power supply stages Power supply complete circuit. Power supply calculations.	4	1	-	3	-		
3	Power supply circuit design using CAD software.	4	1	-	3	-		

4	Power supply design Deliverables (schematic & layout)	4	1	-	3	-	
5	Power supply design Deliverables (PCB)	4	1	-	3	-	
6	Power supply design Deliverables (Complete PCB)	4	1	-	3	-	
7	Revision and Mid Exam						
8	H-bridge Based on Relay	4	1	-	3	-	
9	H-bridge Based on transistor and MOSFET	4	1	-	3	-	
10	H-bridge Based on L 298 IC.	4	1	-	3	-	
11	555 timer (A stable circuit application)	4	1	-	3	-	
12	555 timer (Mono- stable circuit application) And simple Mechatronics systems	4	1	-	3	-	
13	H-bridge Based on Relay	4	1	-	3	-	
14	H-bridge Based on Relay	4	1	-	3	-	
15,16	15,16 Final Exam.						

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
3	Midterm exam	7	30	30 %
4	Final Written Exam	15, 16	30	30 %
7	Assignments / Project /Portfolio/ Logbook	2,4,8,10	40	40 %

6- Learning Resources and Supportive Facilities *

Learning	The main (essential) reference	Alciator & Histand, "Introduction
resources (books,	(must be written in full according to the scientific documentation method)	to Mechatronics & Measurements

scientific references, etc.) *		systems"; McGraw-Hill, Second Edition, 2023.
	Other References	• Savant, C. J., Roden, M. S., Carpenter, G. L., & Savant, C. J. (2024). Electronic design: circuits and systems. Undeland, M. N., Robbins, W. P., & Mohan, N. (2024). Power electronics. Converters, Applications, and Design, 763.
	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
	Devices/Instruments	Soldering station, multimeter, oscilloscope, PCB drilling tools, power supply unit
Supportive facilities &	Supplies	Electronic components (resistors, capacitors, ICs, wires, breadboards, PCBs)
equipment	Electronic Programs	
for teaching	Skill Labs/ Simulators	Mechatronics Workshop Lab (Equipped for PCB manufacturing and circuit testing)
and learning *	Virtual Labs	Simulation software (e.g., Eagle CAD, Multisim, Proteus)
	Other (to be mentioned)	Access to EKB platform, AI learning tools, Microsoft Office tools, Projector

	Course Coordinator	Program Coordinator
Name	Prof. Dr. Eman Nasser	Dr. Ahmed Abdalbadia
Signature	lès Este Le Missible	Saranties

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Microcontrollers				
Course Code (according to the bylaw):	MTE 214				
Department/s that participated in the teaching:	Mechanical Engineering			g	
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>3</u>	<u>1</u>		4	
Course Type:	Compulsory				
The level to which the course was introduced:	SENIOR 1				
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>		
Institute:	Highe	r Technolo	gical Inst	itute	
Name of Course Coordinator:	Dr. Mina Raafat				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment	
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Basics of Computing and digital design- Microprocessor architectures - Microcontroller architectures - Microcontroller Programming using assembly and a high level language (Basic or C...)-I/O Port programming - Addressing modes - Arithmetic and logic - Timer and serial port programming- Interrupts programming - Small course project.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes		
	A4,A6,A9,A10,D1,D2,D3	Upo	n completion of the course, the student will be able to:	
Code	Text	Code	Text	
A4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles	LO1	Use assembly and C programming languages for various practice projects codes creation.	
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements	LO2	Monitor and clarification of program outputs using an LCD display.	
A9	Use creative, innovative and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations	LO3	Design alternative codes for the same project for enhancing flexible thinking and innovation.	
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies	LO4	simulate microcontroller-based projects to gain new knowledge for self-learning skills improvement	
D1	Integrate a wide range of analytical tools , techniques , equipment , and software packages to design and develop mechatronics systems	LO5	Design a temperature control circuit using different programming languages.	
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design	L06	Design electronic systems using PIC microcontroller concepts and tools.	

	Plan, manage, and implement designs		
	of mechatronics systems, subsystems, modules, and machine elements based		Carry out the design of different programming codes by applying
D 0	,		
D3	on traditional and contemporary	L07	knowledge of computer-aided tools
	technological, professional, and		and PIC C software.
	computer-aided tools.		

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Indirect Instruction							Information Technology- Assisted Learning						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
V	V	V	V	V	V	V	V			V		V			V

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours					
No.	(Course Topics)	Weekly	Theoretical	Trai	ining			
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Introduction to computing	4	1	2	1	-		
2	Microcontroller architecture, memorytypes	4	1	2	1	-		
3	Assembly language programming	4	1	2	1	-		
4	Branch, Call and time delay	4	1	2	1	-		
5	Continue to assembly language programming	4	1	2	1	-		
6	Microcontroller Stack & Interrupt	4	1	2	1	-		

7	Revision and Mid Exam									
8	Introduction to Microcontroller programming in C	4	1	2	1	-				
9	Microcontroller External and InternalInterrupts	4	1	2	1	-				
10	Microcontroller LCD & Keyboardinterfacing	4	1	2	1	-				
11	Microcontroller Timers	4	1	2	1	-				
12	Microcontroller ADC	4	1	2	1	-				
13	Final Project	4	1	2	1	-				
14	Continue to final project	4	1	2	1	-				
15,16		Fina	ıl Exam.							

Experiment Topics:

Serial	Experiment
1	Led o/p (assembly code)
2	Change led state using push button at input (assembly code)
3	Led flashing (delay in assembly code)
4	Change led flashing sequence using push button (assembly code)
5	Experiment 1&2&3&4 in C code
6	Counting and display on 7 segments
7	ADC using variable resistance as an input
8	Final project (e.x temp measurement, car garage, elevator, safe)

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10%
2	Exam 2 written (Semester work)	12	10	10%
3	Midterm exam	7	20	20 %

4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	14-12	20	20%

6- Learning Resources and Supportive Facilities *

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	"Programming PIC Microcontrollers with XC8: Mastering Classical Embedded Design (Maker Innovations Series) ",Armstrong Subero Second Edition(2024)			
(books, scientific references,	Other References	"PIC Microcontrollers Programming in C" Author: Milan Verle			
etc.) *	Electronic Sources (Links must be added)				
	Learning Platforms (Links must be added)	EKB - Microsoft office			
Supportive	Devices/Instruments	Laptop, PIC microcontroller programmer			
facilities & equipment	Supplies	Breadboard & El electronic component (resistors, capacitors, jumpers, crystal,)			
for	Electronic Programs	Mikro C pro IDE , PROTUS			
teaching	Skill Labs/ Simulators	non			
and	Virtual Labs	non			
learning *	Other (to be mentioned)	non			

	Course Coordinator	Program Coordinator
Name	Dr. Mina Raafat	Dr. Ahmed Abdalbadia
Signature	Mina Raafat	Soranling

المعهد التكنولوجي العالى - بالعاشر من رمضان

توصيف مقرر دراسي

1- معلومات أساسية:

	ضية 3	تربية رياد		اسم المقرر: (تبعا لما ورد باللائحة)
	PH	كود المقرر: (تبعا لما ورد باللائحة)		
	ماسية	القسم/الأقسام العلمية التي شاركت في التدريس:		
نظري	عملي	اخري (تحدد)	إجمالي	إجمالي عدد الساعات المعتمدة للمقرر:
2	1		1	(تبعا لما ورد باللائحة)
	ي	اجبار		نوع المقرر:
	SEN	NOR 2		المستوى الدراسي الذي قدم فيه المقرر:
	ندسية	البارمج اله		البرنامج الأكاديمي:
	جي العالي	المعهد التكنولو		المعهد:
	ق حامد	د خلود فارو		اسم منسق المقرر:
	مي للبرنامج	جهة مناقشة واعتماد تقرير المقرر:		
	7/26	6/2025		تاريخ اعتماد تقرير المقرر:

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

الهندسة الرياضية:المعدات الحديثة للتربية البدنية وعلاقتها باختيار الرياضيين ،تحليل الحركة والتقييم والقياس الفسيولوجي ،المعدات الحديثة وعلاقتها باختيار الرياضيين، معالحة مياه حمامات السباحة، أبعاد الملاعب ، الاختلافات الفسيولوجية خلال مزاولة الرياضة وتأثيرها على الملابس الرياضية. مقدمة في علم النفس الرياضي ،تعريف علم النفس الرياضي، والدافع، والقلق، والتدريب العقلي، والاسترخاء، التصور العقلي، واستخدام أجهزة الكمبيوتر في قياس الحالة النفسية، العلاقة بين علم النفس الرياضي والهندسة الرياضية

3- نواتج التعلم للمقرر:

اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر	مخرجات البرنامج / المعايير الأكاديمية المتبناة (التي يحققها المقرر تبعا للمصفوفة في توصيف البرنامج)			
عند الانتهاء من المقرر سيكون الطالب قادرا على	A4_A5_A7_A8_A9			
النص	الكود	النص	الكود	
التعرف علي الكفاءه الهوائيه وقدراتها وانواعها	LO1			
معرفة بعض الاسس الخاصة بالكفاءة الهوائية	LO2	الاستفادة من التقنيات المعاصرة، والممارسات والمعايير، وإرشادات الجودة، ومتطلبات الصحة والسلامة والقضايا البيئية ومبادئ إدارة المخاطر.	A4	
تنمية المعرفة ببعض المصطلحات الخاصة بالهندسة والرياضه	LO3			
معرفة الاختبارات والمعايير الخاصة بالكفاءة الهوانية	LO4	ممارسة تقنيات البحث وأساليب التحقيق كجزء لايتجزأ من		
التعرف علي العمل العضلي اللاهواني وانواع القدرات الخاصة به	LO5	التعلم.	A5	
التعرف علي العجز الاكسجيني والدين الاكسجيني وانواعهما	LO6	العمل بكفاءة كفرد وعضو في فرق متعددة التخصصات	A7	
التعرف علي الهندسة الرياضية واهميتها واهدافها	LO7	ومتعدد الثقافات		
تنمية المعرفه بانواع العضلات والانقباض العضلي	LO8	لتواصل بفعالية بيانياً وشفاهه وكتابة مع مجموعات من الجماهير باستخدام الادوات العصرية.	A8	
زيادة معرفة الطالب بالاجهزة الرياضية الحديثة واستخداماتها	LO9	استخدم التفكير الابداعي والمبتكر والمرن واكتساب مهارات		
تطوير الإجهزة بما يتناسب مع التقنيات الحديثة	LO10	ريادة الاعمال والقيادة لتوقع المواقف الجديدة والاستجابة لها	A9	

4 طرق التعليم والتعلم للمقرر:

س ئىر	التدري المباه		راتيجيات التعلم بمساعدة تكنو لوجيا المعلومات												
المحاضرات	التمارين العملية والتجارب	العصف الذهنى	التطم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير الأبحاث	الحوار والمناقشة	التدريب الميدائي	الزيارات الميدانية	التعلم الذاتى	التطم بالإكتشاف	برامج المحاكاة أو النمذجة	المعامل الافتراضية	التعلم الالكترونى	الذكاء الإصطناعي في التعليم
V							V			$\sqrt{}$				√	

الجدول الدراسى للمقرر:

عدد ساعات التعلم المتوقعة تدريس تدريب نظري المتوقعة المتوقعة المتوقعة المتوقعة المتوادية المتوا		المحتوى العلمي للمقرر اجمالي عدد (موضوعات المقرر) الساعات الساعات الأسبوعية		رقم الأسبوع الدراسي		
عملي	تمارين	ــري	- J			
1	0	1	2	المقدمة ومفهوم عن علم الهندسه الرياضيه اهدافها اهميتها + تدريبات على اللياقة البدنية	1	
1	0	1	2	الكفاءة الهوائية واختبار اتها + تدريبات على اللياقة البدنية	2	
1	0	1	2	اسس تنمية الكفاءة الهوائية + تدريبات على اللياقة البدنية	3	
1	0	1	2	الكفاءة اللاهوائية واختبار اتها + تدريبات على اللياقة البدنية	4	
1	0	1	2	شروط تنمية التحمل اللاهوائي + تدريبات على اللياقة البدنية	5	
1	0	1	2	علم البيو ميكانيك (البيو ميكانيك الرياضي بعض المفاهيم و المصطلحات الخاصة بالحركة) + التدريب على اختبار ات اللياقه	6	
			ل الدراسي	مراجعة وامتحان منتصف الفصا	7	
1	0	1	2	الجهاز الحركي(تركيب العضلة انواع العضلات)+ تدريبات على اللياقة البدنية	8	
1	0	1	2	الاعتبار ات الخاصة باختيار الموقع (المنشاة الرياضية) + تدريبات على اختبار ات اللياقة البدنية	9	
1	0	1	2	الاشتر اطات العامة لتصميم المنشات الرياضية + تدريبات على اختبار ات اللياقة البدنية	10	
1	0	1	2	النقنيات الحديثة في معالجة المياه + تدريبات على اللياقة البدنية	11	
1	0	1	2	علم النفس الرياضي (الاجهزة الحديثة للتدريب العقلي) + تدريبات على اللياقة البدنية	12	
	إختبارات الفصل الدراسي النهائية عملي					

5- طرق تقييم الطلاب:

النسبة المئوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	٩
%20	20	4	بحث تقييمي للشق العملي	1
% 20	20	7	امتحان منتصف الفصل الدراسي	2
% 30	30	13_14	امتحان نهائي تحريري	3
%30	30	13	امتحان نهائي عملي	4

6- مصادر التعلم والتسهيلات المادية:

التطور التقني ودوره في المجال الرياضي صبري عمر زكي حسن دار المعرفه2020م	المرجع الأساسي للمقرر (لابد من كتابة البيانات كاملة وفقا لطريقة توثيق علمي)	
طبيقات البيوميكانيك في التدريب والاداء صريح عبد الكريم دار دجلة الطبعة الاولي 2019م	المراجع الأخرى	مصادر التعلم
 https://ar.wikipedia.org/wiki https://ar.wikipedia.org/wiki 	المصادر الالكترونية (لابد من إضافة الروابط)	(الكتب والمراجع العلمية وغيرها)
EKB - Microsoft office	المنصة التعليمية (لابد من إضافة الرابط)	
قاعة محاضرات مجهزة	1	التجهيزات
المكتبات المركزية والفرعية.	2	التعليمية
الوسائل التعليمية (داتا شو) وجهاز كمبيوتر محمول.	3	المساندة للتعليم
مّذكرة لتدريس المقرر وكشوف متابعة للطلاب	4	والتعلم *

منسق البرنامج	منسق المقرر	
ا د/ أحمد عبد الغفار	د _ا خلود فاروق حامد	الإسم
(كالمسالخفار	خلوه فاروق حامر	التوقيع

المعهد التكنولوجي العالى - بالعاشر من رمضان

توصيف مقرر دراسي

1- معلومات أساسية:

	فاوض	مبادئ الت		اسم المقرر: (تبعا لما ورد باللائحة)
	HU	كود المقرر: (تبعا لما ورد باللائحة)		
	ىاسية	القسم/الأقسام العلمية التي شاركت في التدريس:		
نظري	عملي	اخري (تحدد)	إجمالي	إجمالي عدد الساعات المعتمدة للمقرر:
2			2	(تبعا لما ورد باللائحة)
	ي	اختيار		نوع المقرر:
	SEN	IIOR 2		المستوى الدراسي الذي قدم فيه المقرر:
	ہندسیة	البارمج اله		البرنامج الأكاديمي:
	جي العالي	المعهد التكنولو		المعهد:
	عبد المحسن	د/ سلوی محمد .		اسم منسق المقرر:
	لمي للبرنامج	جهة مناقشة واعتماد تقرير المقرر:		
	7/26	/2025		تاريخ اعتماد تقرير المقرر:

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

يهدف المقرر إلي تزويد الطالب بالمعرفة الحديثة حول مفهوم وطبيعة المبادئ وخصائص التفاوض الفعال، وكذلك استراتيجياته وتكتيكاته المختلفة، وتنمية مهارات الطالب الخاصة بالإعداد الجيد للتفاوض وممارسته في المجالات المختلفة في منظمات المعاصرة. ويتناول المقرر الموضوعات التالية: مفهوم وخصائص ومبادئ التفاوض – الطبيعة الديناميكية للتفاوض – العلاقات الاعتمادية – أخلاقيات التفاوض – الجوانب النفسية والاجتماعية للتفاوض الجيد – التفاوض التعاوني والتفاوض التنافسي – الإعداد الجيد للتفاوض – استراتيجيات وتكتيكات التفاوض – الجوانب التنظيمية للجلسة التفاوضية – النفوذ والتأثير في التفاوض – استخدام الأسئلة والرد علي الاعتراضات – التعامل مع المواقف الصعبة وحالات فشل التفاوض – أفضل الممارسات في التفاوض (حالات عملية).

3- <u>نواتج التعلم للمقرر:</u> اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر	نواتج التعلم للمقرر					
لد الانتهاء من المقرر سيكون الطالب قادرا على	ie	(A3,A4,A5,A7,A8)				
النص	الكود	النص	الكود			
يفهم أهمية التفاوض	LO1	تتطبيق عمليات التصميم الهندسي لانتاج حلول				
يتعرف علي مبادئ واسس التفاوض	LO2	فعالة من حيث التكلفة تلبي الاحتياجات المحددة				
اكتساب مهارات الحوار والنقاش البناء	LO3	مع مراعات الجوانب العالمية والثقافية والاجتماعية والاقتصادية والبيئية والأخلاقية وغيرها من الجوانب حسب الاقتضاء للانضباط وضمن مبادئ وسياقات التصميم والتنمية المستدامين.	A3			
اكتساب مهارات المعرفة من خلال الانترنت	LO4	الاستفادة من التقنيات المعاصرة وقواعد				
اكتساب مهارات التواصل الجيد مع الاخرين	LO5	الممارسة والمعايير وارشادات الجودة ومتطلبات	A4			
اكتساب مهارات العمل مع فريق	LO ₆	الصحة والسلامة والقضايا البيئية ومبادئ إدارة	11.			
التعاون والتعامل مع الاخرين	LO7	المخاطر.				
اكتساب مهارات التواصل الجيد مع الاخرين	LO8	ممارسة تقنيات البحث وطرق التحقيق كجزء متأصل من التعلم.	A5			
القدرة علي قيادة المهنيين والعمل كفريق لانجاز المهام العملية	LO9	العمل بكفاءة كفرد وكعضو في فرق متعددة التخصصات ومتعددة الثقافات.	A7			
القدرة علي قيادة المهنيين والعمل كفريق لانجاز المهام العملية	LO10	التواصل الفعال -بيانيا ولفظيا وخطيا – مع مجموعة من الجماهير باستخدام الأدوات المعاصرة.	A8			

4 طرق التعليم والتعلم للمقرر:

يس اشر	التدر المبا		التدريس الغير مباشر								ستراتيجيات التعلم بمساعدة تكنولوجيا المعلومات				
المحاضرات	التمارين العملية والتجارب	العصف الذهني	التعلم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير /الأبحاث	الحوار والمناقشة	التدريب العيداني	الزيارات الميدانية	التعلم الذاتى	التطم بالإكتشاف	برامج المحاكاة أو النمذجة	المعامل الافتراضية	التعلم الالكترونى	الذكاء الإصطناعي في التعليم

√	V		1	1			1	√			1	√	
----------	---	--	---	---	--	--	---	----------	--	--	---	----------	--

الجدول الدراسي للمقرر:

متوقعة	عدد ساعات التعلم المتوقعة		إجمالي عدد	المحتوى العلمي للمقرر			
يپ		تدریس نظري	إجمع <i>ت حدد</i> الساعات الأسبوعية	(موضوعات المقرر)	رقم الاسبوع الدراسي		
عملي	تمارين	ــري					
0	0	2	2	تعريف بالمقرر الدراسى ومقدمة عامه	1		
0	0	2	2	أهمية التفاوض وإهدافه	2		
0	0	2	2	أنواع المفاوضات	3		
0	0	2	2	العناصر الأساسية لعملية التفاوض	4		
0	0	2	2	مراحل العملية التفاوضية	5		
0	0	2	2	إجراءات التفاوض	6		
		سى	سف القصل الدرا	مراجعة وامتحان منتص	7		
0	0	2	2	مهارات التفاوض	8		
0	0	2	2	مباريات التفاوض	9		
0	0	2	2	استراتيجيات حل النزاع	10		
0	0	2	2	خطوات عملية التفكير التفاوضي	11		
0	0	2	2	كيفية التفاوض بفاعلية	12		
0	0	2	2	تكتيكات التفاوض	13		
0	0	2	2	مراجعة عامة	14		
	إختبارات الفصل الدراسي النهائية						

5- طرق تقييم الطلاب:

النسبة المئوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	٩
% 10	10	3	امتحان 1 تحريري (أعمال سنة)	1
% 10	10	10	امتحان 2 تحريري (أعمال سنة)	2
% 20	20	7	امتحان منتصف الفصل الدراسي	3
% 40	40	15 و 16	امتحان نهائي تحريري	4
% 20	20	طوال القصل	تكليفات / مشروع / ملف الإنجاز /كتيب الانشطة	5

6- مصادر التعلم والتسهيلات المادية:

منسق البرنامج	منسق المقرر	
ا.د/ أحمد عبد الغفار	د/ سلوي محمد عبد المحسن	الإسم
Jeille)	Dr. Salus	التوقيع

Higher Technological Institute (HTI) - 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Project Management					
Course Code (according to the bylaw):	MNG 201					
Department/s that participated in the teaching:	Mechanica	l Engineer	ing			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total		
(according to the bylaw)	2	1		3		
Course Type:		Comp	oulsory			
The level to which the course was introduced:	SENIOR 1					
Academic Program:	Mechanical Engineering					
Institute:	Higher Technological Institute					
Name of Course Coordinator:	Dr. Asmaa Ahmed Soliman					
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department					
Course Specification Approval Date:		8/12/	/2025			

2. Course Overview (Brief summary of scientific content):

Project management overview, organizational structures, assessing success, planning, learning curves, network scheduling techniques, CPM analysis, precedence networking, resource allocation and constraints, cost management, risk management, project performance measurement and control.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS).

Program Outcomes (NARS) (according to the matrix in the program specs)			Course Learning Outcomes
A7, A9 & A10		Upon co	ompletion of the course, the student will be able to:
Code	Text	Code	Text
		LO1	Identify the fundamental concepts and phases of project management.
Function efficiently as an individual and as a member of multidisciplinary and multi-cultural	LO2	Explain the role of organizational strategy in project selection and prioritization.	
	teams.	LO3	Describe how an organization's mission, vision, and strategy influence project planning.
	Use creative, innovative, and flexible thinking and acquire	LO4	Develop project network schedules using techniques such as Critical Path Method (CPM) and Program Evaluation Review Technique (PERT).
A9	entrepreneurial and leadership skills to anticipate and respond to new situations.	LO5	Apply core project management principles to minimize project duration and mitigate risks.
		LO6	Analyze the impact of risk management processes on project outcomes.
A 10	Acquire and apply new knowledge, and practice self, lifelong and other	LO7	Schedule project resources and associated costs using appropriate tools.
A10	learning strategies.	LO8	Recognize the different methods for project resource allocation.

4. Course Teaching and Learning Methods:

Dire Instru					Indi	rect I	nstruo	ction				r	Inforr Fechn isted	ology	-
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
$\sqrt{}$	$\sqrt{}$	V	-	•	-	$\sqrt{}$	-	-	-	-	-	-	-	-	$\sqrt{}$

Course Schedule:

Week	Scientific content of the course	Total	Expected number of the Learning Hours			
No.	(Course Topics)	Weekly Hours	Theoretical	Training		
		Hours	teaching (lectures)	Tutorial	Practical Lab /	
1	Introduction for project management	3	2	1	0	
2	Organization strategy and project selection	3	2	1	0	
3	Work Breakdown structure (WBS), Organization Breakdown Structure (OBS), Activity & Scope, Planning Process and Time management Project Planning	3	2	1	0	
4	Activities Duration, Activities Sequence, Project Networks. Gantt Chart (Bar Chart) and Solved Examples on Bar chart (Gant Chart)	3	2	1	0	
5	Activity On Arrow (AOA) and Solved Examples on Activity on Arrow (AOA)	3	2	1	0	
6	Activity On Node (AON) and Solved Examples on Activity on Node	3	2	1	0	
7	Revision and M	Mid Exan	n			
8	Managing Project Risk	3	2	1	0	
9	Scheduling Resources and Costs	3	2	1	0	

10	Applicable Examples on Scheduling Resources	3	2	1	0			
11	Reducing Project Duration	3	2	1	0			
12	Cost–Duration Trade-off examples	3	2	1	0			
13	Cost–Duration Trade-off examples	3	2	1	0			
14	Revision	3	2	1	0			
15,16	Final Exam.							

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	3	10	10 %
2	Exam 2 written (Semester work or quiz)	5	10	10 %
3	Exam 3 written (Semester work or quiz)	10	10	10 %
4	Midterm exam	7	20	20 %
5	Final Written Exam	15, 16	40	40 %
6	Assignments / Project /Portfolio/ Logbook	12	10	10 %

6- Learning Resources and Supportive Facilities *

Learning resources (books, scientific references, etc.) *	The main (essential) reference (must be written in full according to the scientific documentation method)	 Ravi V. Industrial Engineering and Management. PHI Learning Pvt. Ltd.; 2015 Aug 31. Baudin, M., & Netland, T. (2022). Introduction to manufacturing: An industrial engineering and management perspective. Routledge. 				
	Other References	1. Cardona-Meza LS, Olivar-Tost G. Modeling and simulation of project management through the PMBOK® standard using complex networks. Complexity. 2017;2017(1):4791635.				
	Electronic Sources (Links must be added)	N/A				
	Learning Platforms (Links must be added)	EKB - Microsoft office				
Supportive	Devices/Instruments	Data show- Dashboard				
facilities &	Supplies	N/A				
equipment	Electronic Programs	Microsoft teams				
for	Skill Labs/ Simulators	N/A				
teaching	Virtual Labs	N/A				
	Other (to be mentioned)	N/A				

and	
anu	
1 4	
learning *	
learning *	

	Course Coordinator	Program Coordinator
Name	Dr. Asmaa Ahmed Soliman	Dr. Mohamed Ashraf
Signature	أسماء سليمان	Gils

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Measurement Lab					
Course Code (according to the bylaw):	MTE 221					
Department/s that participated in the teaching:	Mechanica	al Enginee	ring			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total		
(according to the bylaw)	=	<u>~</u>		<u>~</u>		
Course Type:		Compu	lsory			
The level to which the course was introduced:		SENIC	OR 1			
Academic Program:	<u>Mechatror</u>	nics Engine	<u>eering</u>			
Institute:	Highe	r Technolo	gical Inst	itute		
Name of Course Coordinator:	A	Assoc. Mona	A. Younis			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department					
Course Specification Approval Date:		8/12/2	025			

2. Course Overview (Brief summary of scientific content):

Safety Instructions - Hands on Experiments for measurements, Measurement principles – Error analysis – Whetstone bridge – Operational amplifier - A/D & D/A - Data transfer, serial and parallel ports. Transducers for displacement, velocity, temperature, pressure, and light are to be covered.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(accord	Program Outcomes (ARS) ing to the matrix in the program specs)		Course Learning Outcomes		
A5&A6&A7&A8, D3&D4			Upon completion of the course, the studen will be able to:		
Code	Text	Code	Text		
A5	Practice research techniques and methods of investigation as an inherent part of learning.	LO1.	Identify the sensitivity of wheastone bridge and application of different sensors by research techniques.		
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO2.	Select the appropriate sensors/actuators/signal conditioning systems for any application based on functions, performance, compitibility and cost		
A7	Function efficiently as an individual and as a member of multi-disciplinary and multi-cultural teams.	LO3.	Collaborate effectively in diverse teams to complete Conducting different experiments using electronic electronic components.		
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO4.	Apply measurement operations using probes in the kit to measure current and volt and documentation.		
D3	Plan, manage, and implement designs of mechatronics systems, subsystems, modules, and machine elements based on traditional and contemporary technological, professional, and computer-aided tools.	LO5.	Implement designs of operational amplifier using NI Elvis kit		

D4	Estimate and measure the performance of an electrical/ electronic/ digital/ mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO6.	Measure sensitivity of whetstone bridge circuit.
----	---	------	--

4. Course Teaching and Learning Methods:

Dir Instru n	uctio		Indirect Instruction					Information Technology- Assisted Learning			· -				
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$		$\sqrt{}$			

Course Schedule:

Week	Scientific content of the course	Total		Expected number of the Learning Hours			
No. (Course Topics)		Weekly	Theoretical	Training		other	
	1	Hours	teaching (lectures)	Tutorial	/ Practical Lab		
1	Introduction –Wheatstone bridge.	3	-	-	3	-	
2	Balance condition for Wheatstone bridge.	3	-	-	3	-	

3	Sensitivity of Wheatstone bridge.	3	-	-	3	-
4	Sensitivity of Wheatstone bridge.	3	-	-	3	-
5	Operational Amplifiers	3	-	1	3	-
6	Revision for part 1 & Quiz	3	-	1	3	-
7	Revision and Mid Exam					
8	The effect of operational amplifier on the sensitivity of Wheatstone bridge.	3	-	-	3	-
9	Temperature Sensors (Thermocouple Sensor)	3	-	-	3	-
10	Temperature Sensors (Thermocouple Sensor)	3	-	1	3	-
11	NI Elvis Kit sensors (Strain gauge, Sonar, In fared, pressure sensor, Magnetic field sensor, .etc.)	3	-	-	3	-
12	NI Elvis Kit sensors (Strain gauge, Sonar, In fared, pressure sensor, Magnetic field sensor, .etc.)	3	-	1	3	-
13	NI Elvis Kit sensors (Strain gauge, Sonar, In fared, pressure sensor, Magnetic field sensor, .etc.)	3	-	-	3	-
14	Revision for part 2	3	-	-	3	-
15,16	Final Exam.					

Experiment Topics: (If any)

Serial	Experiment		
1st	Balance condition for Wheatstone Bridge		
2nd	Effect of sensitivity on Wheatstone Bridge (Resistance of the ratio arms)		
3rd	Effect of sensitivity on Wheatstone Bridge (Ratios of the arms)		
4th	Effect of sensitivity on Wheatstone Bridge (Source voltage)		
5th	Operational Amplifier apllications		
6th	The sensitivity effect of wheatstone bridge on op-amp		
7th	Thermistor sensor		
8th	Thermocouple sensors		
9th	NI Elivs (strain gauge, sonar,infared, presure sensor,Magnetic filed,.etc)		

5- methods of student passements

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	4	15	15%
2	Exam 2 written (Semester work or quiz)	11	15	15%
3	Midterm exam	As scheduled	30	30%
4	Final Written Exam	AS scheduled	30	30%
5	Assignments / Project /Portfolio/ Logbook	AS scheduled	10	10 %

6- Learning Resources and Supportive Facilities *

Learning resources (books, scientific	The main (essential) reference (must be written in full according to the scientific documentation method)	Thomas L. Floyd; "Digital Fundamentals", 8th Edition. Prentice Hall, 2003.		
references, etc.) *	Other References	Hand out to students one by one		
	Devices/Instruments	NI ELVIS, Oscilloscopes, multimeters		
Supportive facilities & equipment for teaching and learning *	Supplies	Wheatstone bridge circuits & resistive sensors Operational amplifier kits A/D and D/A converters Serial & parallel communication modules Transducers: LVDT (displacement), tachometer/encoder (velocity), thermocouples (temperature), pressure sensors, photodiodes/LDRs (light)		
	Electronic Programs	LABVIEW		

	Course Coordinator	Program Coordinator		
Name	Assoc. Mona A. Younis	Dr. Ahmed Abdelbadea		
Signature	MONA A. YOUNIS	Saranling		

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Digital System Lab				
Course Code (according to the bylaw):	MTE 223				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	_	<u> </u>		٣	
Course Type:	Compulsory				
The level to which the course was introduced:	SENIOR 1				
Academic Program:	Mechatronics Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Assoc. Mona A. Younis				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Safety Instructions - The aim of the lab is to introduce to the student all basic components of digital design. Taking this lab will enable the student to understand and utilize digital components such as counter, registers, memories, multiplexers and decoders in order to implement logic functions. In addition, microprocessors and microcontrollers are introduced – Different languages (assembly and at least one high level) are to be practiced.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	Program Outcomes (ARS) ing to the matrix in the program specs)		Course Learning Outcomes		
	A5&A6&A7&A8, D3	Upon	completion of the course, the student will be able to:		
Code	Text	Code	Text		
A5	Practice research techniques and methods of investigation as an inherent part of learning.	LO1	Design digital circuit using research technique on PLD software		
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO2.	Implement cirucit to studying the operation decoder,MUX,and Flipflops.		
A7	Function efficiently as an individual and as a member of multi-disciplinary and multi-cultural teams.	LO3. Collaborate effectively in divided teams to complete Conduction different experiments using different components.			
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO4.	Apply measurement operations using instrument embedded in the kit to measure the truth table and documentation.		
D3	Plan, manage, and implement designs of mechatronics systems, subsystems, modules, and machine elements based on traditional and contemporary technological, professional, and computer-aided tools.	LO5.	Implement designs of different digital circuits using LabVIEW Software.		

4. Course Teaching and Learning Methods:

Dire Instru		Indirect Instruction						Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	√	V			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						$\sqrt{}$		V

Week	Scientific content of the course	Total	Expect Le							
No.	(Course Topics)	Weekly	Theoretical	Trai	other					
		Hours	teaching (lectures)	Tutorial	/ Practical Lab					
1	Decoder and MUX circuits	3	0	0	3	-				
2	SR,D,JK flipflops	3	0	0	3	-				
3	Counter Circuits	3	0	0	3	-				
4	Introduction to PLD	3	0	0	3	-				
5	Logic Gates with PLD	3	0	0	3	-				
6	Decoder PLD	3	0	0	3	-				
7	Revision and Mid Exam									
8	MUX with PLD	3	0	0	3	-				

9	7- segment with PLD	3	0	0	3	-			
10	Flipflops circuits with PLD	3	0	0	3	-			
11	Flipflops circuits with PLD	3	0	0	3	-			
12	Counter with PLD	3	0	0	3	-			
13	Shift Register with PLD	3	0	0	3	-			
14	Revision	3	0	0	3	-			
15,16	Final Exam.								

5- methods of student passements

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	4	15	15%
2	Exam 2 written (Semester work or quiz)	11	15	15%
3	Midterm exam	As scheduled	30	30%
4	Final Written Exam	AS scheduled	30	30%
5	Assignments / Project /Portfolio/ Logbook	AS scheduled	10	10 %

Learning resources (books, scientific	The main (essential) reference (must be written in full according to the scientific documentation method)	Thomas L. Floyd; "Digital Fundamentals", 8th Edition. Prentice Hall, 2003.				
references, etc.) *	Other References	Hand out to students one by one				
Supportive facilities & equipment	Devices/Instruments	NI trainer kits Logic probes and oscilloscopes				
for	Supplies	Breadboards and IC components				

teaching and		(counters, registers, decoders, multiplexers, memories)
learning *		LABVIEW
	Electronic Programs	Programming software (MPLAB X,
	_	Arduino IDE, Keil uVision, Proteus)

	Course Coordinator	Program Coordinator
Name	Assoc. Mona A. Younis	Dr. Ahmed abd el badii
Signature	MONA A. YOUNIS	Serenthia

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Robotics						
Course Code (according to the bylaw):	MTE 224						
Department/s that participated in the teaching:	Me	chanical E	ngineerin	<u>a</u>			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total			
(according to the bylaw)	<u>3</u>	<u>1</u>		4			
Course Type:	Compulsory						
The level to which the course was introduced:		SENIC	OR 1				
Academic Program:	<u>Mechatron</u>	nics Engine	eering				
Institute:	Highe	r Technolo	gical Inst	itute			
Name of Course Coordinator:	Dr Mina Ra	aafat					
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department						
Course Specification Approval Date:		8/12/2	025				

2. Course Overview (Brief summary of scientific content):

Industrial robots, robot systems, kinematics of robots, Forward Kinematics, Inverse Kinematics, control of robots, robot programming languages, applications, tools to use with robots, software-tools.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		C	Course Learning Outcomes		
	A2,A9,D3,D4	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO1	Develop and conducting appropriate experiments for artificial robots, and simulate them using various simulation tools.		
A9	Function efficiently as an individual and as a member of multi-disciplinary and multi- cultural teams	LO2	Work effectively both individually and collaboratively in multi-disciplinary and multi-cultural teams to design an artificial manipulator.		
D3	Plan, Manage and Carry out designs of Mechatronics systems, sub-system, modules ,elements and machines elements based on the knowledge of Traditional, Technological, Professional, Computer Aided and Software tools contemporary to the field of Mechatronics engineering	LO3	Design an arm robot by applying knowledge of traditional, technological, professional, computer-aided, and contemporary software tools in the field of Mechatronics Engineering.		
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO4	Evaluate the performance of an artificial manipulator and assess the stability of its operation.		

4. Course Teaching and Learning Methods:

Direct		Information
Instructio	Indirect Instruction	Technology-
n		Assisted Learning
		110010000 = 000111111

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$					$\sqrt{}$

Week	Scientific content of the course	Total	Expected	number of	the Learning	J Hours
No.	(Course Topics)	Weekly	Theoretical	Trai		
	· •	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
1	Robotics, robot types, components, configurations, and applications.	4	2	2	0	,
2	Robot Degree of Freedom (DOF) and robot workspace. Simulate different robots' workspaces.	4	2	2	0	•
3	Spatial descriptions and homogeneous transformations Computing position and orientation.	4	2	2	0	-
4	Parameterization of Rotations and MATLAB robotics toolbox.	4	2	2	0	-
5	Introduction to Robot kinematics, forward kinematics, Denavit-Hartenberg Convention (DH-Parameters), and assignment of coordinate frames.	4	2	2	0	-
6	Introduction to Robot kinematics, forward kinematics, Denavit-Hartenberg Convention (DH-Parameters), and assignment of coordinate frames.	4	2	2	0	-

	DH parameters using robotic toolbox										
7	Revision and Mid Exam										
8	Inverse kinematics. Inverse kinematics using robotic toolbox	4	2	2	0	-					
9	Inverse kinematics. Inverse kinematics using robotic toolbox	4	2	2	0						
10	Velocity kinematics. Jacobian using robotic toolbox	4	2	2	0	-					
11	Velocity kinematics. Jacobian using robotic toolbox	4	2	2	0	-					
12	Robot dynamic analysis. dynamic using robotic toolbox	4	2	2	0	-					
13	Robot dynamic analysis. dynamic using robotic toolbox	4	2	2	0	-					
14	Revision	4	2	2	0	-					
15,16	Final Exam.										

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10%
2	Exam 2 written (Semester work)	12	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-13	20	20%

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	"INTRODUCTION TO ROBOTICS MECHANICS AND CONTRO" JIM YOHANNAN(2023)
scientific	Other References	"MODERN ROBOTICS:MECHANICS PLANNING AND CONTRO" VIJAY KAUSHAL(2023)

references, etc.) *		
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Laptop
facilities & equipment	Supplies	non
for	Electronic Programs	MATLAB
teaching	Skill Labs/ Simulators	non
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr. Mina Raafat	Dr. Ahmed Abd Elbade
Signature	Mina Raafat	Paraulling

Course Specification

1. Basic information:

Course Title (according to the bylaw):	CAD/CAM for Mechatronics				
Course Code (according to the bylaw):	MTE 226				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>3</u>	<u>3</u>		<u>6</u>	
Course Type:	Compulsory				
The level to which the course was introduced:	SENIOR 2				
Academic Program:	<u>Mechatror</u>	nics Engine	<u>eering</u>		
Institute:	Highe	r Technolo	gical Inst	itute	
Name of Course Coordinator:	Dr. Hossa	m Ramada	<u>n</u>		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:					

2. Course Overview (Brief summary of scientific content):

Product cycle, collecting of relevant information of design part, Geometric modeling of the component using graphic software(wireframe, surface, solid) ,mechanism analysis of the assembly- Parts, Force and stress analysis of designed Part, Optimum design and graphical evaluation of the model ,documentation of the designed part (views ,sectional views , 2d draw). Computer aided manufacturing (CNC Computer numerical control coded program, computer Aided process planning CAPP, Robotics)- Mechatronics applications- Future Developments.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	rogram Outcomes (ARS) ding to the matrix in the program specs)	Ó	Course Learning Outcomes
	A2,B4,D1,D3	Upon co	mpletion of the course, the student will be able to:
Code	Text	Code	Text
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO1	Demonstrate an understanding of the various types of CNC machines and programming methods used in generating G-code.
В4	Adopt suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and maintain mechanical equipment and systems.	LO2	Apply G-code programming to perform required machining tasks and create multiple designs to enhance practical skills.
D1	Integrate a wide range of analytical tools , techniques , equipment , and software pacakage to design and develop mechatronics systems	LO3	Utilize different software tools for design and implementation, and develop proficiency in writing and interpreting code, as well as understanding the relationship between design and programming.
D3	Plan, manage, and implement designs of mechatronics systems, subsystems, modules, and machine elements based on traditional and contemporary technological, professional, and computer-aided tools.	LO4	Compare and contrasting the different programming methods using appropriate analytical approaches.

4. Course Teaching and Learning Methods:

Dir Instr	uctio		Indirect Instruction					Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V	V			V	V			$\sqrt{}$		V	V		

Week	Scientific content of the course	Total	Expected	number of	the Learning	Hours
No.	(Course Topics)	Weekly Hours	Theoretical	Trai	ning	
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
1	Basic Terms Used in NC, CNC Machines.	6	1	2	3	-
2	Programming Systems and Types of Motion Control.	6	1	2	3	-
3	Computer Numerical Control Machines	6	1	2	3	-
4	Features of CNC Machines and Machine Control Unit of CNC	6	1	2	3	-
5	Positioning system and Applications of NC & CNC with Adv., Disadv.	6	1	2	3	-
6	NC Coded Program.	6	1	2	3	-
7	R	evision a	and Mid Exa	m		
8	Format of Part Program, Preparatory Commands and Miscellaneous functions	6	1	2	3	-
9	NC part program	6	1	2	3	-
10	Cont. NC part program	6	1	2	3	-

11	CNC application program	6	1	2	3	-		
12	Cont. CNC application program	6	1	2	3	-		
13	Cont. CNC application program	6	1	2	3	-		
14	Cont. CNC application program	6	1	2	3	-		
15,16	Final Exam.							

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	6	10	10 %
2	Exam 2 written (Semester work)	12	10	10 %
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	14	20	20 %

Learning resources (books, scientific references, etc.) *	The main (essential) reference (must be written in full according to the scientific documentation method)	-Mikell P. Groover, "Automation, Production System, and Computer- integrated Manufacturing", Prentice Hall. (2021).
	Other References	-Mikell P. Groover, Emory W. Zimmers, Jr, " CAD/CAM Computer-Aided Design and Manufacturing", Prentice Hall., (1984)Ibrahim Zeid — Practical CAD/CAM in Industryll Macraw — Hill Publishing Company Limited, (1995).
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive facilities &	Devices/Instruments	BOXFORD CNC LATHE and MILLER MACHINE
equipment	Supplies	
for	Electronic Programs	
teaching	Skill Labs/ Simulators	BOXFORD V.10

and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr. Hossam Ramadan	Dr. Ahmed Abdalbadia
Signature	Hossam Ramadan	Paraulies

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Vision Systems And Sensors In Robotics				
Course Code (according to the bylaw):	MTE E01				
Department/s that participated in the teaching:	Mechanica	al Enginee	rin <u>g</u>		
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	4	_	_	4	
Course Type:	Elective				
The level to which the course was introduced:	SENIOR 1				
Academic Program:	Mechatronics Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Mina Raafat				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Knowledge about the possibilities and applications of vision systems and sensors in a production environment- Image processing, optical systems, camera systems, illumination, data processing and analysis, sensor technologies and their applications, object recognition.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(accor	Program Outcomes (ARS) ding to the matrix in the program specs)	Course Learning Outcomes		
	A2,A4,A10,D1,D2	Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO1	Conduct experiments and simulations using vision and sensor data in robotics.	
A 4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO2	Apply current vision and sensing technologies in robotics, considering relevant industry standards and safety practices.	
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO3	Explore recent advancements in computer vision and sensor technologies, and their reflection on their potential applications in robotics through independent learning.	
D1	Integrate a wide range of analytical tools, techniques, equipment, and software packages to design and develop mechatronics systems.	LO4	Utilize image processing libraries and sensor integration tools for functional vision-based robotic development	
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design.	LO5	Analyze a vision-based sensing subsystem for robotic applications using appropriate modeling and optimization tools.	

4. Course Teaching and Learning Methods:

Direct Instructio n	Indirect Instruction	Information Technology- Assisted Learning
---------------------------	----------------------	---

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$			$\sqrt{}$

Week	Scientific content of the course	Total		d number of the Learning Hours				
No.	(Course Topics)	Weekly Hours	Theoretical	Trai	_			
	·	nours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Introduction to Vision and Sensor Systems in Robotics	4	2	2	0	-		
2	Camera Models and Optics	4	2	2	0	-		
3	Lighting and Illumination Techniques	4	2	2	0	-		
4	Image Acquisition and Preprocessing	4	2	2	0	-		
5	Feature Extraction and Edge Detection	4	2	2	0	-		
6	Sensors in Robotics I: Proximity and Range Sensors	4	2	2	0	-		
7	R	evision a	and Mid Exa	m				
8	Sensors in Robotics II: Vision- Integrated Sensors	4	2	2	0	-		
9	Object Detection and Recognition	4	2	2	0	-		
10	Motion Detection and Tracking	4	2	2	0	-		
11	Vision-Guided Robotics and Control	4	2	2	0	-		
12	Sensor Fusion and Data Processing	4	2	2	0	-		

13	Applications and Case Studies	4	2	2	0	-	
14	Project Presentations and Review	4	2	2	0	-	
15,16	Final Exam.						

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	13	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-14	20	20%

Learning resources (books, scientific	The main (essential) reference (must be written in full according to the scientific documentation method)	"ROBOTICS VISION AND CONTROL FUNDAMENTALS ALG." GELAR CLARK(2024)
references, etc.) *	Other References	
Oto.,	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Laptop
facilities & equipment	Supplies	Project sensors and actuators
for	Electronic Programs	MATLAB
teaching	Skill Labs/ Simulators	non
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr. Mina Raafat	Dr. Ahmed Abd Elbade
Signature	Mina Raafat	Seventhis

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Theory Of Integrated Systems			
Course Code (according to the bylaw):	MTE E02			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>4</u>			<u>4</u>
Course Type:		Elect	ive	
The level to which the course was introduced:	SENIOR 2			
Academic Program:	<u>Mechatron</u>	ics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Dr.Ahmed	Abu El -F	<u>ADI</u>	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

Basics of atom-, molecular- and solid state physics, basis technologies, function layers, volume micro mechanics, surface micro mechanics, thick-film technology, layout and joining techniques, LIGA techniques, applications, design, simulation, maximum utilization of the chip surface, processing speed.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes		
A4,A10,D1,D2,D4		Upo	n completion of the course, the student will be able to:	
Code	Text	Code	Text	
A4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO1	Explain the foundational principles of atomic, molecular, and solid-state physics relevant to integrated systems	
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies	LO2	Explore recent applications and developments in integrated microsystems through independent learning.	
D1	Integrate a wide range of analytical tools, techniques, equipment, and software packages to design and develop mechatronics systems	LO3	Simulate chip design for efficient area usage and processing speed	
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design	LO4	Evaluate micro fabrication technologies, including volume/surface micromechanics, thick-film processes, and LIGA.	
D4	Estimate and measure the performance of an electrical/electronic/digital/mechat ronics system under specific input excitation, and evaluate its suitability for a specific application	LO5	Analyze interconnection methods	

4. Course Teaching and Learning Methods:

Direct Instructio n	Indirect Instruction	Information Technology- Assisted Learning
		128828000 2 0001 111118

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
		$\sqrt{}$			\checkmark	\checkmark	\checkmark			$\sqrt{}$		√			$\sqrt{}$

Week	Scientific content of the course	Total	Expected	pected number of the Learning			
No.	(Course Topics)	Weekly Hours	Theoretical	Trai	Training		
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other	
1	Introduction: Scope of Integrated Systems	4	2	2	0	-	
2	Atomic & Molecular Physics in Semiconductor Systems	4	2	2	0	-	
3	Solid-State Physics Fundamentals (Bands, Carriers, Doping)	4	2	2	0	-	
4	Volume Micromechanics (Bulk Etching, Silicon Micromachining)	4	2	2	0	-	
5	Surface Micromechanics (Thin Films, Deposition Techniques)	4	2	2	0	-	
6	Thick-Film Technology & Materials	4	2	2	0	-	
7	R	evision a	and Mid Exa	m			
8	LIGA & Advanced Fabrication Techniques	4	2	2	0	-	
9	Layout, Layer Stacking & Joining Technologies	4	2	2	0	-	
10	Design Rules and Layout Optimization	4	2	2	0	-	
11	Simulation of Microsystems (COMSOL, ANSYS, etc.)	4	2	2	0	-	

12	Maximizing Chip Area & Processing Efficiency	4	2	2	0	-
13	Applications: MEMS, Sensors, Biochips, SoC	4	2	2	0	-
14	Student Presentations + Modern Trends	4	2	2	0	-
15,16	Final Exam.					

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	12	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-13	20	20%

Learning resources (books, scientific	The main (essential) reference (must be written in full according to the scientific documentation method)	Design and Fabrication of MEMS with Applications to Microelectronics (2021) Author: Shubham Tayal
references,	Other References	
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
	Devices/Instruments	Laptop
Supportive	Supplies	non
facilities & equipment	Electronic Programs	COMSOL Multiphysics / CoventorWare / ANSYS
for teaching	Electronic Programs	MATLAB for modeling physics-based structures
teaching and	Skill Labs/ Simulators	
teaching		structures

	Course Coordinator	Program Coordinator		
Name	Dr.Ahmed Abu El -FADl	Dr. Ahmed Abdalbadia		
Signature	Ahmed fadl	Paraullies		

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Selected Topics in Automotive Engineering			<u>otive</u>	
Course Code (according to the bylaw):	AUT E74				
Department/s that participated in the teaching:	Me	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	4	<u>0</u>	<u>0</u>	4	
Course Type:		Elect	ive		
The level to which the course was introduced:		SENIC	OR 2		
Academic Program:	Mechatror	nics Engin	<u>eering</u>		
Institute:	Highe	r Technolo	gical Inst	itute	
Name of Course Coordinator:	Dr. Hossa	m ramadaı	<u>1</u>		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment	
Course Specification Approval Date:		8/12/2	025		

2. Course Overview (Brief summary of scientific content):

To be updated with modern trends in automotive engineering and / or real problems in automotive industry and automobile maintenance – Suitable search assignment(s) may be considered.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acco	Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes		
A2& A4& A10& D2& D4		Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO1	Investigate a real problem or challenge in the automotive industry		
A4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO2	Apply contemporary automotive technologies, industry standards, and codes of practice to evaluate vehicle systems.		
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO3	Identify recent advances in automotive systems and technologies.		
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design.	LO4	Use cutting-edge technologies and methodologies to mimic complex automobile systems		
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO5	Propose viable engineering solutions based on research, design tools, and technical standards.		

4. Course Teaching and Learning Methods:

Direct Instructio n	ructio Indirect Instruction	Information Technology- Assisted Learning
---------------------------	-----------------------------	---

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	$\sqrt{}$	$\sqrt{}$				$\overline{}$				$\sqrt{}$		$\sqrt{}$			$\sqrt{}$

Week	Scientific content of the course	Total	Expected	number of	the Learning	g Hours
No.	(Course Topics)	Weekly Hours	Theoretical	Trai		
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
1	History of Electric Vehicles	4	2	2	0	-
2	History of Hybrid Electric Vehicles	4	2	2	0	-
3	Configurations of Electric Vehicles	4	2	2	0	1
4	Performance of Electric Vehicles Traction Motor Characteristic	4	2	2	0	-
5	Tractive Effort and Transmission Requirement.	4	2	2	0	•
6	Vehicle Performance.	4	2	2	0	•
7	R	evision a	and Mid Exa	m		
8	Tractive Effort in Normal Driving. Energy Consumption.	4	2	2	0	-
9	Hybrid Electric Vehicles Concept of Hybrid Electric Drive Trains.	4	2	2	0	•
10	Architectures of Hybrid Electric Drive Trains Series Hybrid Electric Drive Trains.	4	2	2	0	-
11	Parallel Hybrid Electric Drive Trains	4	2	2	0	-
12	Torque-Coupling Parallel Hybrid Electric	4	2	2	0	-

	Drive Trains						
13	Speed-Coupling Parallel Hybrid Electric Drive Trains	4	2	2	0	-	
14	Torque-Coupling and Speed-Coupling Parallel Hybrid Electric Drive Trains.	4	2	2	0	-	
15,16	Final Exam.						

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10%
2	Exam 2 written (Semester work)	8	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-13	20	20%

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	"Automotive Systems and Emerging Technologies (2021) Editor: Philippa A. Benson			
(books, scientific references,	Other References				
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office			
Supportive	Devices/Instruments	Laptop			
facilities &	Supplies	non			
equipment for	Electronic Programs	MATLAB/Simulink Engineering Design Tools (SolidWorks)			
teaching	Skill Labs/ Simulators	non			
and	Virtual Labs	non			
learning *	Other (to be mentioned)	non			

	Course Coordinator	Program Coordinator
Name	Dr. Hossam Ramadan	Dr. Ahmed Abdalbadia
Signature	Hossam Ramadan	Paraulling

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Hybrid and Electric Vehicles			
Course Code (according to the bylaw):	AUT E76			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>4</u>	<u>0</u>	<u>0</u>	<u>4</u>
Course Type:	Elective			
The level to which the course was introduced:	SENIOR 2			
Academic Program:	<u>Mechatror</u>	nics Engin	<u>eering</u>	
Institute:	Highe	r Technolo	ogical Inst	itute
Name of Course Coordinator:	Dr. Hossai	m ramadaı	<u>1</u>	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			
Course Specification Approval Date:		8/12/2	0025	

2. Course Overview (Brief summary of scientific content):

Principles of analysis, and design of, Power sources in automobiles, ICE, Electric Motors, Fuel cells, Batteries, Different Configurations of modern power trains (Hybrid – Electrical), modern trends.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acco	Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes
A2&A4&A10&D2&D4		Upo	n completion of the course, the student will be able to:
Code	Text	Code	Text
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO1	Analyze the characteristics and roles of power sources used in HEVs and EVs
A4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO2	Explain the integration and functionality of electric motors, batteries, ICEs, and fuel cells in modern vehicle systems.
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO3	Investigate current and emerging trends in hybrid and electric vehicle technologies.
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design.	LO4	Simulate energy flows and efficiency in hybrid-electric systems using appropriate tools.
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO5	Model different hybrid and electric powertrain configurations.

4. Course Teaching and Learning Methods:

Direct Instructio	Indirect Instruction	Information Technology-
n		Assisted Learning

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$								$\sqrt{}$

Week	Scientific content of the course	Total	Expected	number of	the Learnin	g Hours
No.	(Course Topics)	Weekly	Theoretical	Trai		
	-	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
1	Introduction to HEVs and EVs – Motivation and Challenges	4	2	2	0	1
2	Overview of Automotive Power Sources	4	2	2	0	•
3	Internal Combustion Engine Review for Hybrid Applications	4	2	2	0	1
4	Electric Motors: Types, Characteristics, and Selection	4	2	2	0	-
5	Battery Technologies: Lithium-ion, NiMH, Management Systems	4	2	2	0	
6	Fuel Cells: Operation, Types, Applications in EVs	4	2	2	0	1
7	R	evision a	and Mid Exa	m		
8	Powertrain Architectures: Series, Parallel, Series-Parallel	4	2	2	0	-
9	Electric-Only Powertrains and Regenerative Braking	4	2	2	0	-
10	Energy Management and Control Strategies	4	2	2	0	-
11	Performance Metrics and Efficiency Analysis	4	2	2	0	•

12	Design Considerations and Component Sizing	4	2	2	0	-			
13	Emerging Trends: Smart Charging, V2G, Autonomous EVs	4	2	2	0	-			
14	Project Presentations	4	2	2	0	ı			
15,16	Final Exam.								

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10%
2	Exam 2 written (Semester work)	8	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-14	20	20%

Learning resources (books, scientific	The main (essential) reference (must be written in full according to the scientific documentation method)	Hybrid and Electric Vehicles: Principles and Applications with Practical Perspectives (2nd Edition, 2021) Author: Gianfranco Pistoia, Boryann Liaw		
references,	Other References			
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office		
Supportive	Devices/Instruments	Laptop		
facilities &	Supplies	NON		
equipment for teaching	Electronic Programs	MATLAB/Simulink (Simscape, SimDriveline). MS Excel		
and	Skill Labs/ Simulators	NON		
learning *	Virtual Labs	NON		
3	Other (to be mentioned)	NON		

	Course Coordinator	Program Coordinator
Name	Dr. Hossam Ramadan	Dr. Ahmed Abdalbadia
Signature	Hossam Ramadan	Paraulling

المعهد التكنولوجي العالى - بالعاشر من رمضان

توصیف مقرر دراسی

1- معلومات أساسية:

ما ورد باللائحة)	حقوق الإنسان				
ما ورد باللائحة)	HUM 205				
التي شاركت في التدريس:	العلوم الاساسية				
ت المعتمدة للمقرر:	إجمالي	اخري (تحدد)	عملي	نظري	
حة)	1			1	
		اختيار	ي		
الذي قدم فيه المقرر:		IOR 2	SEN		
:		البارمج ال	ندسية		
		المعهد التكنول	جي العالي		
:	أ.م.د.وليد رضوان				
لد تقرير المقرر:	مجلس القسم العلمي للبرنامج				
المقرر:		/2025	7/26		

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

الالمام بأهمية حقوق الانسان والنشأة التاريخية لتلك الحقوق والمدارس الفقهية لتأصل تلك الحقوق وأحكام الاتفاقيات الدولية الخاصة بحقوق الانسان ، والمنظمات الدولية العالمية والاقليمية القائمة على حماية تلك الحقوق ، وموقف الدستور المصرى من حقوق الانسان ، والحماية القانونية لها على الصعيد الوطنى والصعيد الدولى ، بالاضافة الى حقوق الانسان فى الشريعة الاسلامية – الاصول التاريخية الفلسفية لحقوق الانسان – المصادر الدولية لحقوق الانسان (العالمية والاقليمية) – المصادر الوطنية لحقوق الانسان فى الشريعة الاسلامية على حماية حقوق لأنسان (أجهزة الامم المتحدة) – الحماية الوطنية لحقوق الانسان – حقوق الانسان – مراجعة عامة

3- نواتج التعلم للمقرر:

اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر	مخرجات البرنامج / المعايير الأكاديمية المتبناة (التي يحققها المقرر تبعا للمصفوفة في توصيف البرنامج)		
ند الانتهاء من المقرر سيكون الطالب قادرا على	(A3- A8- A10)		
النص	الكود	النص	الكود
معرفة الحقوق الأساسية للإنسان والتي لا يحيا بدونها.	LO 1	تطبيق عمليات التصميم الهندسي لإنتاج حلول	
معرفة ماله من حقوق وما عليه من واجبات.	LO 2	فعالة من حيث التكلفة تلبي الإحتياجات النوعية	
معرفة دوره في بناء مجتمعه.	LO3	مع مراعاة الجوانب العالمية والثقافية	
		والاجتماعية والاقتصادية والبيئية والأخلاقية	A 3
المقارنة بين المراحل المختلفة لتطور حقوق الإنسان في	LO 4	وغيرها من الجوانب المتسقة مع النظام	
الديانات السماوية والنظم الوضعية.	LO 4	والظروف وضمن مبادئ وسياق التصميم	
		والتنمية المستدامين.	
معرفة حقوق المواطنة وحقوق الوطن على المواطن.	LO 5		
معرفة حقوق البيئة وضرورة الحفاظ عليها وعلاقتها	LO 6	التواصل بفعالية بيانيا وشفاهة وكتابة، مع	
بحقوق الإنسان.	200	مجموعات من الجماهير باستخدام الأدوات	A 8
معرفة أنواع الفساد ودوره في إهدار حقوق الإنسان.	LO 7	العصرية.	
معرفة دور الشباب في مقاومة الفساد وطرق مقاومته.	LO 8		
الممارسة الصحيحة لما له من حقوق وما عليه من واجبات.	LO 9	اكتساب المعارف الجديدة وتطبيقها، وممارسة استراتيجيات التعلم الذاتي وغيرها مدى الحياة.	A 10
تعزيز العديد من السلوكيات والمهارات داخل وخارج			
نطاق العمل في ضوء معرفته لمنظومة الحقوق	LO10		
والواجبات.			

4 طرق التعليم والتعلم للمقرر:

بس ئىر	التدري المباه	التيجيات التعلم بمساعدة التدريس الغير مباشر التعلم التعلم التعلم بمساعدة التعلم													
المحاضرات	التمارين العملية والتجارب	العصف الذهنى	التعلم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير الأبحاث	الحوار والمناقشة	ائتدريب الميدائي	الزيارات الميدائية	التعلم الذاتى	التطع بالإكتشاف	برامج المحاكاة أو التمذجة	المعامل الافتراضية	التطم الالكتروني	الذكاء الإصطناعي في التعليم
					$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$					

الجدول الدراسى للمقرر:

عدد ساعات التعلم المتوقعة		إجمالي عدد	المحتوى العلمي للمقرر		
تدريب		تدریس نظری	إجما <i>ي حدد</i> الساعات الأسبوعية	(موضوعات المقرر)	ر <u>ق</u> م الاسبوع الدراس <i>ي</i>
عملي	تمارين	9 3		11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	
0	0	1	1	تقديم عن المقرر وتعريف أهميته في حياة الطالب.	1
0	0	1	1	حقوق نفسك عليك، ما هي؟ وكيف تؤديها؟	2
0	0	1	1	- تعريف حقوق الإنسان وخصائصها. - أنواع حقوق الإنسان.	3
0	0	1	1	التطور التاريخي لحقوق الإنسان وحرياته.	4
0	0	1	1	- حقوق الإنسان في الشرائع السماوية. - إهدار حقوق الإنسان في الولايات المتحدة الأميركية.	5
0	0	1	1	حقوق الأبناء على الآباء.	6
		ىي	سف الفصل الدراس	مراجعة وامتحان منتص	7
0	0	1	1	- حقوق الأزواج والزوجات وتأسيس أسرة صالحة. - حقوق الأباء على الأبناء.	8
0	0	1	1	حقوق الوطن.	9
0	0	1	1	- الانتماء للوطن. - حقوق البيئة.	10
0	0	1	1	- حقوق اللغة العربية. - الفساد و إهدار حقوق الإنسان. (1)	11
0	0	1	1	- الفساد وإهدار حقوق الإنسان. (2) - دور الشباب في مكافحة الفساد. (1)	12
0	0	1	1	دور الشباب في مكافحة الفساد. (2)	13
0	0	1	1	مراجعة عامة.	14
اختبارات الفصل الدراسي النهانية					

5- طرق تقييم الطلاب:

النسبة المئوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	م
%10	10	5	امتحان 1 تحريري (أعمال سنة)	1
%10	10	9	امتحان 2 تحريري (أعمال سنة)	2
% 20	20	7	امتحان منتصف الفصل الدراسي	3
% 40	40	14	امتحان نهائي تحريري	4
		لا يوجد	امتحان نهائي عملي	5
%10	10	11	امتحان نهائي شفهي	6
%10	10	8	تكليفات / مشروع / ملف الإنجاز /كتيب الانشطة	7

 	لا يوجد	تدريب ميداني	8
 	لا يوجد	أخرى (تذكر)	9

6- مصادر التعلم والتسهيلات المادية:

		-	
إن، حقوق الإنسان، مذكرة للمعهد التكنولوجي العالي بالعاشر من		المرجع الأساسي للمقرر	
*	رمضان.		
خديجة النبراوي: موسوعة حقوق الإنسان في	-1		
الإسلام، دار السلام للطباعة والنشر والتوزيع،			
القاهرة. 2015			
محمد الغزالي: حقوق الإنسان بين تعاليم الإسلام وإعلان الأمم	-2	يه په د	
المتحدة، القاهرة، دار الكتب الإسلامية، 1984		المراجع الأخرى	مصادر التعلم
محمد عمارة: الإسلام وحقوق الإنسان، الكويت، سلسلة عالم	-3		, -
المعرفة، عدد مايو 1985			(الكتب والمراجع
محى شوقى أحمد: الجوانب الدستورية لحقوق الإنسان (رسالة	-4		العلمية وغيرها)
دكتوراة، جامعة عين شمس، 1986)			*
1- https://ar.wikipedia.org/wiki			
		المصادر الالكترونية	
2- http://www.du.edu.eg/		(لابد من إضافة الروابط)	
3- https://www.youtube.com/		(,35/, 5/ -,3/	
1		المنصة التعليمية	
https://www.ekb.eg/ar/home		(لابد من إضافة الرابط)	
(داتا شو) وجهاز كمبيوتر محمول		الأجهزة	
قاعة محاضرات مجهزة		المستلزمات	التجهيزات
363		البرامج الالكترونية	التعليمية
		معامل المهارات/ المحاكيات	المساندة للتعليم
		المعامل الافتراضية	والتعلم *
		أخرى (تذكر)	

منسق البرنامج	منسق المقرر	
ا.د/ أحمد عبد الغفار	أ.م.د.وليد رضوان	الإسم
Jeille)	وليرجنوام	التوقيع

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Thermodynamics and Heat Transfer			
Course Code (according to the bylaw):	MEC 271			
Department/s that participated in the teaching:	<u>Me</u>	chanical E	ngineerin	<u>a</u>
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	4			<u>4</u>
Course Type:	Compulsory			
The level to which the course was introduced:	SENIOR 1			
Academic Program:	Mechatronics Engineering			
Institute:	Higher Technological Institute			
Name of Course Coordinator:	Dr. Ahmed Abd EL Badie			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

Thermodynamic analysis of power and reversed cycles, and an application to internal combustion engines, gas turbines. Compressors, refrigeration and air conditioning. Fundamentals of gas dynamics, adiabatic, fanno and Rayleigh one dimensional flow. Function and performance of measuring instruments, calibration.- Introduction to heat transfer.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes	
		Upon completion of the course, the student will be able to:	
Code	Text	Code	Text
A1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	LO1	Formulate the entropy change relations for both of pure substance and ideal gases.
		LO2	Solve problems related to entropy change for pure substances and ideal gases.
		LO3	Calculate heat transfer rates in different applications using the principles of heat transfer.
А3	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO4	Distinguish different cases of one- dimensional heat conduction (steady and unsteady).
		LO5	Distinguish different cases of convection heat transfer (forced and natural).
B1	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: thermodynamics, heat transfer, fluid mechanics, solid mechanics, material processing, material properties, measurements, instrumentation, control theory and system, mechanical engineering filed	LO6	Analyze the performance of vapor power cycles and vapor compression cycles by applying thermodynamics and heat transfer concepts.

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Indirect Instruction						Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
V	V	V				V									

Week	Scientific content of the course	Total	Expected number of the Learning Hours						
No.	(Course Topics)	Weekly Hours	Theoretical	Trai					
	•	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other			
4	Introduction to Entropy.			2					
1	The Increase of Entropy Principle.	4	2	2	-	-			
2	Entropy Change of Pure Substance.	4	2	2	-	-			
3	The Entropy Change of Ideal Gases.	4	2	2	-	1			
4	Introduction to Gas Power Cycles.	4	2	2	-	-			
5	Otto cycle.	4	2	2	-	-			
6	Diesel Cycle	4	2	2	-	-			
7	Revision and Mid Exam								
8	Mid Exam								
9	Brayton Cycle.	4	2	2	-	-			

10	Rankine Cycle.	4	2	2	-	-			
11	Vapor-Compression Refrigeration Cycle.	4	2	2	-	-			
12	Introduction to Heat Transfer, conduction heat transfer.	4	2	2	-	-			
13	Introduction to convection heat transfer.	4	2	2	1	-			
14	Revision for part 2.	4	2	2	1	-			
15,16	Final Exam.								

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10 %
2	Exam 2 written (Semester work)	10	10	10 %
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	20	20 %

6- Learning Resources and Supportive Facilities *

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	Yunus A. Cengel and Michael A. Boles "THERMODYNAMICS: An Engineering Approach" McGraw-Hill, New York.2019.		
resources (books, scientific	Other References	Yunus A. Cengel and Robert H.Turner "Fundamentals of Thermal-Fluid Sciences" McGraw-Hill, 4th Education, 2018.		
references, etc.) *	Electronic Sources (Links must be added)	NON		
	Learning Platforms (Links must be added)	EKB - Microsoft office		
Supportive	Devices/Instruments	NON		
facilities & equipment	Supplies	NON		
for	Electronic Programs	NON		
teaching	Skill Labs/ Simulators	NON		
and	Virtual Labs	NON		
learning *	Other (to be mentioned)	NON		

	Course Coordinator	Program Coordinator			
Name	Dr. Ahmed Abd EL Badie	Dr. Ahmed Abd EL Badie			
Signature	Paraulling	Paraulling			

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Refrigeration and Air Conditioning.				
Course Code (according to the bylaw):	MEC 256				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	4			4	
Course Type:	Elective				
The level to which the course was introduced:	SENIOR 2				
Academic Program:	<u>Mechatron</u>	ics Engine	<u>eering</u>		
Institute:	Highe	r Technolo	gical Inst	itute	
Name of Course Coordinator:	Dr/Moataz	Mohamed	Abd El-R	aou <u>f</u>	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:		8/12/2	025		

2. Course Overview (Brief summary of scientific content):

Refrigeration cycle analysis, refrigerants, equipment design and selection, cold stores, cryogenics and liquefaction of gases. Refrigeration cycle, performance, coefficient of performance. A study of the design of heating and cooling systems for residential and industrial applications. System components and analysis, heating and cooling load estimates, detailed design calculations are conducted for the sizing of fail, ducts, pumps and piping. Air conditioning systems, performance, coefficient of performance.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	rogram Outcomes (ARS) ding to the matrix in the program specs)	Course Learning Outcomes			
		Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
A1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	LO1	Analyze ideal thermodynamical cycles via recalling its performace relationships.		
	Apply engineering design processes to produce cost-effective solutions that meet	LO2	Estimate cooling capacity of refrigeration and air conditioning systems.		
АЗ.	specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO3	Design air duct systems		
A10.	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO4	Describe the significance of energy- saving classes and inverter technology in domestic and industrial sectors, which supports the sustainability of refrigeration and air conditioning systems.		
	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of:	LO5	Compare the performance of Various refrigeration and air conditioning systems via common criteria.		
B1.	Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material	LO6	Analyze thermal analysis via analytical formulas necessary to completing the design process of refrigeration and air conditioning systems.		
	Properties, Measurements, Instrumentation, Control Theory and Systems,	LO7	Determine the power and flow rate of thermodynamically open systems		

	Mechanical Design and Analysis, Dynamics and Vibrations.		involved in refrigeration and air conditioning systems.			
В3.	Select conventional mechanical equipment according to the required	LO8	Clarify the significance of each component and accessory in terms of performance stability before categorizing and choosing them for usage in refrigeration and air conditioning systems.			
	performance.	LO9	Classify air conditioning systems and choose the suitable techniques on the bases of zone characteristics and the overall cooling capacity needed in all the targeted spaces.			
B4.	Adopt suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and maintain mechanical equipment and systems.	LO10	Demonstrate "ASHRAE" as the most widely used international standard in the field of air conditioning.			

4. Course Teaching and Learning Methods:

Dir Instr	uctio		Indirect Instruction							Information Technology- Assisted Learning					
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
	V	V			V		V			V				V	

Week	Scientific content of the course	Total	Expected	number of	the Learning	g Hours
No.	(Course Topics)	Weekly Hours	Theoretical teaching	Trai	ning / Practical	Other
			(lectures)	Tutorial	Lab	Other
1	*Revision on: Heat transfer modes-Energy vs Power(units) + Electricity bill calculation criteria. *Introduction to basic thermal cycles+ Air refrigeration systems.	4	2	2	-	-
2	Ideal Vapor compression refrigeration system +refrigerant Properties.	4	4	-	-	-
3	Modified Vapor compression refrigeration system + Online Quiz	4	2	2	-	-
4	Actual Vapor compression refrigeration systems	4	2	2	-	-
5	Classification of basic components of vapor compression systems + Inverter Compressors criterion.+ Online Quiz	4	4	-	-	-
6	Accessories of VCC+ Vapor absorption cycle.	4	4	-	-	-
7	R	evision a	and Mid Exa	m		
8	Introduction to HVAC (Heating, ventilation, and air conditioning) systems + Classification of air conditioning systems. (I. Unitary)	4	4	-	-	-
9	Classification of air conditioning systems. (II. Central) + Air psychometry.	4	4	-	-	-
10	Single and combined air conditioning processes using	4	2	2	-	-

	psychrometric chart. + Online Quiz								
11	Building Survey and human comfort + Heat Gain and Thermal load estimation.	4	4	-	-	-			
12	Cooling load Calculation sequence .	4	2	2	-	1			
13	Air Duct design.+ Online Quiz	4	2	2	-	-			
14	Revision	4	4	-	-	-			
15,16	Final Exam.								

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	3	10	10 %
2	Exam 2 written (Semester work or quiz)	5	10	10 %
3	Midterm exam	7	20	20 %
4	Exam 3 written (Semester work or quiz)	10	10	10 %
5	Exam 4written (Semester work or quiz)	13	10	10 %
6	Final Written Exam	15, 16	40	40 %

6- Learning Resources and Supportive Facilities *

Learning resources (books, scientific	The main (essential) reference (must be written in full according to the scientific documentation method)	*Khurmi, R. S., & Gupta, J. K. (2006). <i>Textbook of refrigeration and air conditioning</i> . S. Chand Publishing. *Dossat, R. J., & Horan, T. J. (2001). <i>Principles of refrigeration</i> (5th ed.). Prentice Hall. *Arora, R. C. (2012). <i>Refrigeration and air conditioning</i> . PHI Learning.
references, etc.) *	Other References	ASHRAE. (2023). ASHRAE handbook: Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers.
	Electronic Sources (Links must be added)	 https://www.ashrae.org/ https://www.youtube.com/c/danfoss

	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	non
facilities & equipment	Supplies	non
for	Electronic Programs	non
teaching	Skill Labs/ Simulators	non
and learning *	Virtual Labs	non
	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr. Moataz Mohamed Abdel-Raouf	Dr. Ahmed Abdalbadia
Signature	Part	Paraulling

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Field Training 3				
Course Code (according to the bylaw):	FTR 231				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)		<u>18</u>		<u>18</u>	
Course Type:	Compulsory				
The level to which the course was introduced:	SENIOR 1				
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>		
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Assoc. Prof. Dr. Mona A. Younis				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			ırtment	
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

This is specialized training in which the student studies; the integrated systems of the various production units, as well as the considerations of industrial safety within the factory. The duration of the industrial training is eighteen hours per week spread over a minimum of five days for one academic term.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes
	A5, A7, A8, A9, B4, D3	Upon co	empletion of the course, the student will be able to:
Code	Text	Code	Text
A5	Practice research techniques and methods of investigation as an inherent part of learning.	LO1	Write a technical report for the field training.
A7	Function efficiently as an individual and as a member of multi-disciplinary and multi- cultural teams.	LO2	Develop new talents while gaining new knowledge in order to manage unknown challenges more wisely in the future.
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools	LO3	Integrate academic knowledge with practical experience gained during training.
A9	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO4	Demonstrate the importance of work, time management, and teamwork, and maintaining professional attitudes.
В4	Adopt suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and maintain mechanical equipment and systems.	LO5	Apply national and international standards and codes
D3	Plan, manage, and implement designs of mechatronics systems, subsystems, modules, and machine elements based on traditional and contemporary technological,	LO6	Measure the performance of different systems under specific input excitations using appropriate measurement tools.

professional, and computer- aided tools.		

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Information Indirect Instruction Technology- Assisted Learning					Indirect Instruction			-					
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	$\sqrt{}$	V				$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	V					

	Scientific content of the course	Total	Expected Lear	LOs		
Week No.	(Course Topics)	Weekly	Theoretical	Tra	ining	covered by
		Hours	teaching (lectures)	Tutorial	Practical /Lab	course
	Train on the overall mechanical process					
As scheduled	Train on reading overall flowsheet of the process Train on reading overall flowsheet of the process	18				
	Midterm Report and Oral Exam					

Carry out research using granted internet sites for references related to student's 2 training process				
Write technical report	Final	Exam.		

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Attendance		10	10%
2	End of term Oral exam		30	30%
3	Midterm Report (Term Work)	As scheduled	20	20 %
4	Final Report (written)	AS scheduled	20	20 %
5	Follow up		20	20 %

6- Learning Resources and Supportive Facilities *

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	Depend on the case/ technical writing booking
(books, scientific	Other References	Hand out to students one by one
references, etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	NON
facilities &	Supplies	NON
equipment for	Electronic Programs	NON
teaching	Skill Labs/ Simulators	NON
and	Virtual Labs	NON
learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator		
Name Assoc. Mona A. Younis		Dr. Ahmed Abdelbadea		
Signature MONA A. YOUNIS		Somewilles		

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Vehicle Testing & Evaluation			
Course Code (according to the bylaw):	AUT E78			
Department/s that participated in the teaching:	<u>Me</u>	chanical E	ngineerin	<u>a</u>
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	4			4
Course Type:		Elect	ive	
The level to which the course was introduced:	SENIOR 2			
Academic Program:	<u>Mechatron</u>	ics Engine	<u>eering</u>	
Institute:	Higher Technological Institute			
Name of Course Coordinator:	Dr. Hossam Ramadan			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			ırtment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

Vehicle testing (road, lab), lab tests (dynamometers for engines& vehicles, C.G. location, tire, road characteristics, tire stiffness, etc.), road tests (acceleration, braking, fuel consumption, etc.), durability tests, evaluation of performance.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	rogram Outcomes (ARS) ding to the matrix in the program specs)	Ó	Course Learning Outcomes	
A2, B3, D4		Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate	LO1	Select appropriate equipment based on the requirements of engine systems and component performance.	
112	findings, and use statistical analyses and objective engineering	LO2	Analyze the causes of faults in engine mechanical components and engine systems.	
В3	Select conventional mechanical equipment according to the required performance.	LO3	Evaluate the performance of engine mechanical components and engine systems.	
D4	Estimate and measure the performance of an electrical/ electronic/ digital/ mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO4	Explain the concepts of maintenance and testing of engine mechanical components and engine systems.	

4. Course Teaching and Learning Methods:

	Information
Indirect Instruction	Technology-
	Assisted Learning
	Indirect Instruction

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
$\sqrt{}$		V					$\sqrt{}$								

Wook	Week Scientific content of the course		Expected	Expected number of the Learning I				
No.	(Course Topics)	Weekly Hours	Theoretical	Trai				
	-	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Thermal Engineering	4	2	2	-	-		
2	Thermal Engineering	4	2	2	-	-		
3	Basics of Automobile-II	4	2	2	-	-		
4	Basics of Automobile-II	4	2	2	-	-		
5	Workshop Technology	4	2	2	-	-		
6	Workshop Technology	4	2	2	-	-		
7	R	evision a	and Mid Exa	m				
8	Vehicle Testing	4	2	2	-	-		
9	Vehicle Testing	4	2	2	-	-		
10	Driving Training	4	2	2	-	-		
11	Driving Training	4	2	2	-	-		
12	Vehicle Maintenance	4	2	2	-	-		
13	Vehicle Maintenance	4	2	2	-	-		

14	Revision	4	2	2	-	-
15,16	Final Exam.					

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	3	10	10%
2	Exam 2 written (Semester work)	10	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	20	20 %

6- Learning Resources and Supportive Facilities *

Lagraina	The main (essential) reference (must be written in full according to the scientific documentation method)	N.DELHI, "AUTOMOTIVE TECHNOLOGY"
Learning resources (books, scientific	Other References	Pacejka,,H.B., (2006), "Tyre and Vehicle Dynamics ", Elsevier. Jazav,R.N., (2008), "Vehicle Dynamics theory and applications",Springer.
references, etc.) *	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	NON
facilities & equipment	Supplies	NON
for	Electronic Programs	NON
teaching	Skill Labs/ Simulators	NON
and	Virtual Labs	NON
learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Dr. Hossam Ramadan	Dr. Ahmed Abdalbadia
Signature	Hossam Ramadan	Saranling

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic Information

Course Title (according to the bylaw):	Environmental Impacts of Projects			
Course Code (according to the bylaw):		MNG	3 202	
Department/s that participated in the teaching:	Che	emical Eng	ineering C	ept.
Total number of credit hours of the course:	Theoretical	Practical	Other (Tutorial)	Total
(according to the bylaw): 1	1	-	-	1
Course Type:		Comp	ulsory	
The level to which the course was introduced:	SENIOR 2			
Academic Program:	All Programs			
Institute:	Higher Technological Institute			
Name of Course Coordinator:	Ass Prof / Soad Abdel Aziz El Metwaly			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	been revi chemical council No	ewed and Engine b. (11). Pleading min	d approve ering case find at	cation has ed by the department tached the rming the
Course Specification Approval Date:	8/5/2025			

2. Course Overview (Brief summary of scientific content):

Introduction: Availability of natural resources, Natural cycles of some basic elements (carbon, oxygen, nitrogen, sulfur, Phosphorous) Conflicts between developments, Economics and environments. Defining emissions sources, impacts, standards and precautions. Water, air and soil pollution and measurements. Historical development for recognizing the need for environmental impact assessment. Assessing the impacts on health, social, cultural and economic activities. Procedures of the environmental impact assessment: screening, scoping, defining impacts, comparing alternatives, plans for mitigation and alleviation, environmental auditing and public participation. Environmental impact statement and reporting, contents and forms. Examples for assessing the impacts of water resources projects on the environment and impacts of different activities on the water environment

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS).

Program Outcomes (NARS) (according to the matrix in the program specs)		Course Learning Outcomes			
	(A3, A4, A6)	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
	Apply engineering design processes to produce cost-effective solutions that meet specified needs with	LO1	Define the steps of EIA study and its objectives, also the structure of the final EIA report		
А3	consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development	LO2	Explain the different types of pollution and environmental component analysis		
	Utilize contemporary technologies, codes of practice and standards, quality		Realize the natural cycles of essential elements and the conflicts between development, economics, and the environment		
A4	guidelines, health and safety requirements, environmental issues and risk management principles	LO4	Recognize qualitative and quantitative methods of impact analysis.		
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO5	Predict EIA for different projects		

4. Course Teaching and Learning Methods:

Dir Instru		Indirect Instruction Technology								nnolog	mation gy- Assisted arning				
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
V				V		V	V								

	Scientific content of the	Total Weekly	Expected number of the Learning Hours						
Week No.	course		Theoretical	Train	ing	Other (Tasks/ Assignments/ Projects/)			
NO.	(Course Topics)	Hours	teaching (lectures)	Tutorial	Practical / Lab				
1	Course Introduction Natural cycles of some elements	1	1	-	-				
2	Types of pollution and measurements.	1	1	-	-				
3	Emissions sources	1	1	-	-				
4	EIA process	1	1	-	-				
5	Quiz 1- EIA Report	1	1	-	-				
6	EIA Report (continued)	1	1	-	-				
7	Revision and Mid Exam								
8	Impact Identification	1	1	-	-				

9	Impact Identification	1	1	-	-			
10	Review and licensing	1	1	-	-			
11	Quiz 2 - Review and licensing (continued)	1	1	-	-			
12	Monitoring and Auditing	1	1	1	-			
13	Monitoring and Auditing (continued)	1	1	1	-			
14	Case Study	1	1	1	-			
15,16	Final Exam.							

5. Methods of Students' Assessment

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	According to schedule	15	15%
2	Exam 2 written (Semester work)	According to schedule	15	15%
3	Midterm exam	7	20	20%
4	Final Written Exam	15, 16	40	40%
5	Assignments / Reports /case study	According to schedule	10	10%

6. <u>Learning Resources and Supportive Facilities</u>: *

	The main (essential) reference (must be written in full according to the scientific documentation method)	John Glasson, Riki Therivel and Andrew Chadwick, Introduction to Environmental Impact Assessment, 4th edition, 2012.
Learning resources (books, scientific references, etc.) *	Other References	 Thom B. Fischer, "Strategic Environmental Assessment in Transport and Land Use Planning", 1st edition, 2023, Barbara Carroll, Josh Fothergill, Jo Murphy, and Trevor Turpin,
		"Environmental Impact Assessment Handbook: A practical guide for planners, developers and communities", Third edition, 2019

		Peter Morris and Riki Therivel, Methods of Environmental Impact Assessment, Third edition, 2009
	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft Office
Supportive	Devices/Instruments	Data show, laptop,
facilities &	Supplies	Essential Supplies
equipment for	Electronic Programs	
teaching and	Skill Labs/ Simulators	
learning *	Virtual Labs	
	Other (to be mentioned)	Library Usage

	Course Coordinator	ad Abd El.aziz El Metwally Dr. Noha Fawzy M. El Husseiny		
Name	Ass. Prof. Soad Abd El.aziz El Metwally	Dr. Noha Fawzy M. El Husseiny		
Signature	Soad Abdel Azíz Awad	Noha ElHosen		

المعهد التكنولوجي العالى _ مدينة العاشر من رمضان

قسم / الهندسة الطبية

توصيف مقرر

كود المقرر: MNG 203

إسم المقرر: اخلاقيات مهنية

مقرر الهندسة الطبية	القسم القائم بتدريس الم
---------------------	-------------------------

1- معلومات أساسية:

ä	الفرقة الخامسة		الفرقة الدراسية / المستوى الدراسي الذي يقدم فيه المقرر		إجباري			نوع المقرر		
	1		عدد الساعات المعتمدة		مايو	202	26/2025	العام الأكاديمي الفصل الدراسي		
1	إجمالي	0	المعامل:	0	التمارين:	المحاضرة: 1		ساعات الإتصال:		
						المتطلب السابق:				
			NARS 2	2018			المعايير الأكاديمية			
			201	6			تاريخ الموافقة على اللائحة			
			ل الدسوقي	ا.م.د/ ام			منسق المقرر			
2016							تاريخ اعتماد توصيف المقرر			
		سم)	د من مجلس الف	عضر الاعتماد	L4)		صيف المقرر	جهة مناقشة واعتماد تو		

2- الوصف العام للمقرر (ملخص موجز للمحتوي العلمي):

رؤية عالمية حول علم الهندسة ووظيفة المهندس: لطالما كان علم الهندسة نبراسًا لأي حضارة. - تُعدّ مهنة الهندسة من أرقى وأسمى المهن (وظيفة هندسية قائمة على الإبداع والابتكار والتطوير من وحي خيال المهندس - خدمة البشرية جمعاء والسعي إلى الجودة في حياة الإنسان). مسؤولية المهندس على الصعيدين الوطني والدولي: الدور الحيوي للمهندس وفقًا لعقود الهندسة الدولية (فيديك). - مسؤولية المهندس وفقًا للقوانين المصرية. أخلاقيات وآداب المهنة: رؤية عالمية حول قانون نقابة المهندسين رقم 66.

3- نواتج التعلم للمقرر:

اتساق نواتج التعلم للمقرر مع مخرجات البرنامج (المعايير المتبناة)

نواتج التعلم للمقرر		مخرجات البرنامج / المعايير الأكاديمية المتبناة (التي يحققها المقرر تبعا للمصفوفة في توصيف البرنامج)				
د الانتهاء من المقرر سيكون الطالب قادرا على	ie	A9, A10				
النص	الكود	النص	الكود			
يوضح طبيعة وظيفة المهندس كدور مهني يجمع بين الإبداع والمسؤولية الاجتماعية.	LO1	استخدم التفكير الإبداعي والمبتكر والمرن، واكتسب مهارات ريادة الأعمال والقيادة لتوقع المواقف الجديدة والاستجابة لها. استخدم التفكير الإبداعي والمبتكر والمرن، واكتسب مهارات ريادة الأعمال والقيادة لتوقع المواقف الجديدة والاستجابة لها.	А9			
يميز بين المسؤوليات المهنية للمهندس في السياق المحلي والدولي، بما في ذلك عقود الفيديك والقوانين المصرية.	LO2	اكتسب وطبّق معارف جديدة، ومارس استر اتيجيات التعلم الذاتي، والتعلم مدى الحياة، وغيرها.	A10			

4 طرق التعليم والتعلم للمقرر:

يس شر	التدر المبا		تيجيات التعلم بمساعدة عنولوجيا المعلومات												
المحاضرات	التمارين العملية والتجارب	العصف الذهنى	التعلم القائم على المشروعات الجماعية	استراتيجية دراسة الحالة	حل المشكلات	كتابة التقارير الأبحاث	الحوار والمناقشة	التدريب العيدائي	الزيارات الميدائية	التعلم الذاتى	التعلم بالإكتشاف	برامج المحاكاة أو النمذجة	المعامل الافتراضية	التعلم الإلكتروني	الذكاء الإصطناعي في التطيم
		V	1		V	V	√							V	

الجدول الدراسي للمقرر:

	لمتوقعة	عات التعلم ا	عدد ساء	إجمالي عدد	المحتوى العلمي للمقرر	
نواتج التعلم التي يحققها المقرر	تدریب تمارین عملی		تدریس نظري	بِبِعدي الساعات الأسبوعية	(موضّوعات المقرر)	رقم الاسبوع الدراسي
LO.1	0	0	1	1	رؤية عالمية حول علوم الهندسة ومهنة المهندس.	1
LO.1	0	0	1	1	رؤية عالمية حول مهنة المهندس.	2
LO.1	0	0	1	1	وظيفة هندسية قائمة على الإبداع والابتكار.	3
LO.1	0	0	1	1	وظيفة هندسية قائمة على التطوير.	4
LO.1	0	0	1	1	دور المهندس الحيوي في العقود الهندسية الدولية.	5
LO.1	0	0	1	1	مسؤولية المهندس في القوانين المصرية.	6
		الدراسي	ف الفصل	امتحان منتص	مراجعة و	7
LO.2	0	0	1	1	معر فة بالاتحاد الدولي للمهندسين الاستشار بين (فيديك).	8
LO.2	0	0	1	1	أخلاقيات وآداب المهنّة: رؤية عالمية حول قانون نقابة المهندسين رقم 66 لسنة 1974 - تأكيد.	9
LO.2	0	0	1	1	مراجعة واختبار قصير.	10
LO.2	0	0	1	1	معر فة بالاتحاد الدولي للمهندسين الاستشاريين (فيديك).	11
LO.2	0	0	1	1	أخلاقيات وآداب المهنّة: رؤيّة عالمية حول قانون نقابة المهندسين رقم 66 لسنة 1974 - تأكيد.	12
LO.1	0	0	1	1	12-11 7 421.	13
LO.2	0	0	1	1	مناقشة التقارير	14
		هائية	راسي الذ	ات القصل الد	إختبار	16-15

5_ طرق تقييم الطلاب:

النسبة المنوية من إجمالي درجة المقرر	درجات التقييم	توقيت التقييم المتوقع (رقم الأسبوع الدراسي)	طرق التقييم *	م
% 20	20	10	امتحان 1 تحريري (أعمال سنة)	1
% 20	20	7	امتحان منتصف الفصل الدراسي	3
% 40	40	15 و 16	امتحان نهائي تحريري	4
% 20	20	13 و 14	تكليفات / مشروع / ملف الإنجاز /كتيب الانشطة	7

^{*} الطَّرق المذكورة هي أمثلةً استرشادية، ويجوز الإضافة والحذف

6- مصادر التعلم والتسهيلات المادية:

Mappes, Thomas A. Biomedical Ethics. 1st ed., .Butterworth, 1999	المرجع الأساسي للمقرر (لابد من كتابة البيانات كاملة وفقا لطريقة توثيق علمي)	
السامرائي، مهدي صالح مهدي. أخلاقيات العمل. دار صفاء للنشر والتوزيع، 2021.	المراجع الأخرى	مصادر التعلم (الكتب والمراجع
اخلاقیات العمل ـ د مهدی صالح مهدی السامرائی Google ـ Books	المصادر الالكترونية (لابد من إضافة الروابط)	العلمية وغيرها) *
EKB - Microsoft office	المنصة التعليمية (لابد من إضافة الرابط)	
داتا شوه	الأجهزة المستلزمات	التجهيزات
	البرامج الالكترونية معامل المهارات/ المحاكيات	التعليمية المسائدة للتعليم
	المعامل الافتراضية أخرى (تذكر)	والتعلم *

* القائمة المذكورة هي أمثلة استرشادية ، ويجوز الإضافة والحذف تبعا لطبيعة المقرر (المراجع محدثة – بحد أقصى أخر 10 سنوات) مع إضافة أحد المراجع المتاحة بمكتبة المعهد.

منسق البرنامج	منسق المقرر	
د/ غادة كريم	ا.م.د/ امل الدسوقي	الإسم
720	Lb	التوقيع

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Power Electronics			
Course Code (according to the bylaw):	MTE 222			
Department/s that participated in the teaching:	Mechanica	al Enginee	ring	
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>3</u>	<u>1</u>		4
Course Type:	Compulsory			
The level to which the course was introduced:	SENIOR 2			
Academic Program:	<u>Mechatron</u>	nics Engine	eering	
Institute:	Higher Technological Institute			
Name of Course Coordinator:	Dr. Mohamed Ahmed Hamdy Hassan			lassan
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Basics of power electronics, multi-phase systems, pointer diagrams, power semiconductors, centre circuits, bridge circuits, commutation procedures, load versions, power converter transformations, direct converters, reverse converters, net controlled converters, single and multi-quadrant controllers, current and voltage indirect converters, control theories, EMC problems

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acc	Program Outcomes (ARS) ording to the matrix in the program specs)	Course Learning Outcomes		
	A1,A3,D2,D4	Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
A 1	engineering randamentals, busic science,		Identify the construction, operation, V-I characteristics, commutation, firing, and protection methods of various power semiconductor devices.	
	and mathematics.	LO2	Model electrical circuits by formulating mathematical equations and analyzing the converter response.	
	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic,		Distinguish between different types and characteristics of power semiconductor devices.	
A3	environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development	LO4	Analyze applications of power electronics by researching and developing knowledge and skills that support life-long learning.	
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific	LO5	Model of electrical circuits by writing its mathematical equation and analyzing the converter response.	
	application; and identify the tools required to optimize this design		Determine the output waveforms of converters under different input conditions.	
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics	LO7	Study the performance of converters with standard input waveforms.	
D 4	system under specific input excitation, and evaluate its suitability for a specific application.	LO8	Evaluate the response and convergence of converters under standard input conditions.	

4. Course Teaching and Learning Methods:

Dir Instru	uctio		Indirect Instruction				Information Technology Assisted Learn		ology	-					
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
		V				V				$\sqrt{}$					

Week	Scientific content of the course	Total	Expected number of the Learning Hours			
No.	(Course Topics)	Weekly	Theoretical	Trai	ining	
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
1	Introduction To Power Electronics	2	1	2	1	•
2	Sinusoids and Phasors	2	1	2	1	-
3	Power Semiconductor Devices	2	1	2	1	-
4	Single Phase Uncontrolled Half – Wave Rectifiers	2	1	2	1	-
5	Single Phase Uncontrolled Full – Wave Rectifiers	2	1	2	1	-
6	Three Phase Uncontrolled Rectifiers	2	1	2	1	-
7	Revision and Mid Exam					

8	Single - Phase Controlled Rectifiers	2	1	2	1	-
9	Three - Phase Controlled Rectifiers	2	1	2	1	-
10	DC-DC Converters	2	1	2	1	-
11	DC-DC Converters	2	1	2	1	-
12	Single - Phase AC-AC Converters	2	1	2	1	-
13	Three - Phase AC-AC Converters	2	1	2	1	-
14	Inverters	2	1	2	1	-
15,16	Final Exam.					

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	According to schedule	20	20%

6- Learning Resources and Supportive Facilities *

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	Rashid, M. H., "Power Electronics, Circuits, Devices and Applications ", Prentice Hall, Fourth Edition, 2018.	
scientific references, etc.) *	Other References	1- Ned Mohan, "Power Electronics, Converters, Applications, and Design", Mc Graw Hill Pub, Third Edition, 20020.	

		2- Cyril W. Lander, "Power Electronics", John Wiley & Sons, Inc, Third Edition, 1993.
	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	NON
facilities &	Supplies	NON
equipment for	Electronic Programs	NON
teaching	Skill Labs/ Simulators	NON
and	Virtual Labs	NON
learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Dr. Mohamed Ahmed Hamdy Hassan	Dr. Ahmed Abdalbadia
Signature	MOHAMED	Paraulies

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	B.Sc. Project 1					
Course Code (according to the bylaw):	MTE 240					
Department/s that participated in the teaching:	Mechanica	al Enginee	ring			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total		
(according to the bylaw)	1	<u>3</u>		4		
Course Type:	Compulsory					
The level to which the course was introduced:	SENIOR 2					
Academic Program:	<u>Mechatror</u>	nics Engine	<u>eering</u>			
Institute:	Higher Technological Institute					
Name of Course Coordinator:	Prof.Dr.EMAN Ibrahim					
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment		
Course Specification Approval Date:	8/12/2025					

2. Course Overview (Brief summary of scientific content):

In phase One of the Graduation Project, The student should attach himself to one or more faculty members as advisor(s). A topic for the project related to Mechatronics Engineering is to be chosen in accordance with the interest of both the student and the faculty. The selected topic is to be approved by the department committee for projects. It is preferred to be linked with real problem in industry. During this phase, the following tasks are to be fulfilled, Planning phase including a proposal with a suggested time plan –Search on previous work in the related subjects and Design phase (Material – components- design calculations – documentations)

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	Program Outcomes (ARS) rding to the matrix in the program specs)		Course Learning Outcomes
	•	Upon	completion of the course, the student will be able to:
Code	Text	Code	Text
A5	Practice research techniques and methods of investigation as an inherent part of learning.	LO1	Conduct literature review and applying research methodologies to identifying state-of-the-art solutions in the chosen project domain.
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO2	Develop a project proposal with a detailed timeline, considering design constraints and interdisciplinary requirements.
A7	Function efficiently as an individual and as a member of multi-disciplinary and multi-cultural teams.	LO3	Work effectively as an individual and as a team member to share responsibilities in project planning and design
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO4	Prepare and presenting technical reports and project documentation effectively using contemporary tools.
A9	Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	LO5	Demonstrate creativity and leadership in proposing innovative project ideas and responding to challenges with flexible solutions.

				•
B2	Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field	LO6	Develop preliminary mechanical designs using appropriate materials and both traditional and computeraided tools	
В4	Adopt suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and maintain mechanical equipment and systems	LO7	Apply relevant engineering standards, codes, and basic economic considerations in the preliminary project design and documentation	
D3	Plan, manage, and implement designs of mechatronics systems, subsystems, modules, and machine elements based on traditional and contemporary technological, professional, and computer-aided tools.	LO8	Plan and implementing the initial design of a mechatronic system, subsystem, or module using appropriate tools and methods.	
D4	Estimate and measure the performance of an electrical/electronic/digital/mec hatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO9	Estimate and assessing the expected under defined operating conditions	performance

4. Course Teaching and Learning Methods:

Direct Instructio n	Indirect Instruction	Information Technology- Assisted Learning
---------------------------	----------------------	---

Lectures	Tutorial / Practical	Brain Storming	Project based	Case Study	Problem Base	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
		√	√	√		√	√			√	√	\checkmark			

Week	Scientific content of the course	Total	Expect Lea	LOs		
No.	(Course Topics)	Weekly Hours	Theoretical	Traiı	ning	covered by course
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	course
1	Introduction to graduation project requirements & advisor selection	4	1	0	3	-
2	Defining project topics, problem identification, industry linkage	4	1	0	3	-
3	Proposal writing guidelines and time plan preparation	4	1	0	3	-
4	Literature review methods & database search	4	1	0	3	•
5	Review and approval of proposals by department committee	4	1	0	3	-
6	Research on state-of-the-art methods and tools	4	1	0	3	-
7		R	Revision			
8	Material and component selection (initial stage)	4	1	0	3	-
9	Introduction to design calculation methods	4	1	0	3	-
10	CAD and simulation tools for preliminary design	4	1	0	3	-
11	Documentation techniques and standards	4	1	0	3	-

Page **4** of **5**

12	Mid-project review with advisors (oral presentation)	4	1	0	3	-	
13	Finalization of design phase: materials, components, calculations	4	1	0	3	-	
14	Submission of Phase 1 report	4	1	0	3	-	
15,16	Final presentation.						

5- Methods of students' assessment:

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Proposal & Time Plan	4	15	15%
2	Literature Review Report	6	20	20%
3	Mid-Project Presentation & Progress	12	15	15 %
	Evaluation			
5	Preliminary Design, Calculations &	13	25	25%
	Standards Integration			
6	Final Report & Oral Presentation	14,15	25	25%

6- Learning Resources and Supportive Facilities *

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2019). Engineering Design: A Systematic Approach (3rd Edition).
(books, scientific references,	Other References	Ulrich, K. T., & Eppinger, S. D. (2020). Product Design and Development (7th Edition).
etc.) *	Electronic Sources (Links must be added)	Egyptian Knowledge Bank: https://www.ekb.eg/ar/home
Supportive	Devices/Instruments	Laptop
facilities & equipment for teaching and learning *	Electronic Programs	SolidWorks, AutoCAD MATLAB/Simulink, ANSYS, Proteus MS Word

	Course Coordinator	Program Coordinator
Name	Prof. Dr. Eman Nassar	Dr. Ahmed Abdalbadia
Signature	1 Edward - Dir 641	Paraulies

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Signal Processing & Digital Control					
Course Code (according to the bylaw):	MTE 241					
Department/s that participated in the teaching:	Mechanical Engineering					
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total		
(according to the bylaw)	1	<u>2</u>		<u>3</u>		
Course Type:	Compulsory					
The level to which the course was introduced:	SENIOR 2					
Academic Program:	Mechatror	nics Engine	<u>eering</u>			
Institute:	Highe	r Technolo	gical Inst	itute		
Name of Course Coordinator:	Associate Prof. Dr. Alaa Abdelwahab Saleh					
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department					
Course Specification Approval Date:		8/12/2	025			

2. Course Overview (Brief summary of scientific content):

Representation, analysis, and design of discrete time signals and systems, Z-transforms and the discrete Fourier transform. Difference equations - Digital control systems - The fast Fourier transform (FFT) algorithm- High speed convolution - Time - and frequency domain design techniques for recursive and non - recursive systems. Finite word length effects. Additional topics may include Homo - morphic signal processing, Hilbert transforms, parametric signal modeling, and power spectrum estimation - applications.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(6	Program Outcomes (ARS) according to the matrix in the program specs)	Cou	rse Learning Outcomes
	A1,A2,A10,D2,D4	-	completion of the course, student will be able to:
Code	Text	Code	Text
A1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	LO1	Identify continuous and discrete signals also formulation them using basic mathematical functions.
	runuamentais, basic science and mathematics.	LO2	Distinguish the different forms and shapes of various types of signals.
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO3	Conduct simulations for discrete signals, including sampling and system response.
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies.	LO4	Analyze signal processing applications by researching information for developing knowledge and skills that support life-long learning.
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the	LO5	Model digital systems by formulating their mathematical difference equations and system stability analyzation
	component for a specific application; and identify the tools required to optimize this design.		Determine the transfer function of a system and its behavior under standard input signals.
	Estimate and measure the performance of an electrical/electronic/digital/mechanical/mechatronics	LO7	Assess the performance of systems subjected to standard inputs.
D4	system under specific input excitation, and evaluate its suitability for a specific application.		Evaluate system response and its convergence due to standard input conditions.

4. Course Teaching and Learning Methods:

Dir Instr	uctio		Indirect Instruction						Information Technology- Assisted Learning						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
V		V				V	$\sqrt{}$								V

Week	Scientific content of the course	Total	Expected	number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Trai	ining			
	• /	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Introduction to signals and systems and its classification	3	1	1	1	-		
2	Continuous and discrete signals	3	1	1	1	-		
3	Continuous signals and processing on it	3	1	1	1	-		
4	Digital (discrete) signals and standard signals with variant processing	3	1	1	1	-		
5	Digital (discrete) signals and standard signals with variant processing	3	1	1	1	-		
6	Variant types of system and LTI system.	3	1	1	1	-		
7	R	evision a	and Mid Exa	m				
8	Z transform and its application.	3	1	1	1	-		

9	Z transform and its application.	3	1	1	1	-			
10	Z transform and its application.	3	1	1	1	-			
11	Properties of Z- transform	3	1	1	1	-			
12	Inverse Z	3	1	1	1	-			
13	Inverse Z	3	1	1	1	-			
14	Writing difference equation and studying digital system stability.	3	1	1	1	-			
15,16	Final Exam.								

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work or quiz)	5	15	15%
2	Exam 2 written (Semester work or quiz)	10	15	15%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	10	10%

	The main (essential) reference (must be written in full according to the scientific documentation method)	Discrete-Time Signal Processing (Prentice Hall Signal Processing) 3rd Edition, 2019
Learning resources (books, scientific references, etc.) *	Other References	Hwei P. Hsu:" Signals and Systems " McGraw Hill 2005 Vinay K. Ingle, John G. Proakis, Digital Signal Processing Using MATLAB: Third Edition, 2012
	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office

Supportive	Devices/Instruments	Non
facilities & equipment	Supplies	Non
for	Electronic Programs	Non
teaching	Skill Labs/ Simulators	Non
and	Virtual Labs	Non
learning *	Other (to be mentioned)	Non

	Course Coordinator	Program Coordinator
Name	Associate Prof. Dr. Alaa Abdelwahab Saleh	Dr. Ahmed Abdalbadia
Signature	alaa	Serenthis

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Design of Mechatronics system					
Course Code (according to the bylaw):	MTE 242					
Department/s that participated in the teaching:	Mechanical s Engineering					
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total		
(according to the bylaw)	<u>2</u>	<u>2</u>		<u>4</u>		
Course Type:		Compu	lsory			
The level to which the course was introduced:	SENIOR 2					
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>			
Institute:	Highe	r Technolo	gical Inst	itute		
Name of Course Coordinator:	PROF. DR	. AMAL NA	SSAR			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department					
Course Specification Approval Date:		8/12/2	025			

2. Course Overview (Brief summary of scientific content):

The components and the structure of Mechatronics systems, General Diagram of Mechatronics System. Using a Software Package for Application of Modeling & Simulation of Mechatronics Systems. Different Control Methods for Mechatronics System (hardware based & Software based). Interfacing Systems & Electronics Connections. Design and implementation of a course Project Including: Mechanical system, Sensors, Actuators, and a Control unit. A proposal with time plan, follow up report, final report, and presentation of the project (May be using power point) are required for the course project.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	rogram Outcomes (ARS) ding to the matrix in the program specs)	Ó	Course Learning Outcomes
	A2,D1,D3	Upon co	empletion of the course, the student will be able to:
Code	Text	Code	Text
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use	LO1	Identify the principles of mechatronics system design, including element-level design (mechanical parts, sensors, control units, signal conditioning, and actuators), the design process, and the integration of the whole system.
	statistical analyses and objective engineering judgment to draw conclusions	LO2	Recognize modern engineering technologies in the areas of sensors, control units, and actuators through instruction and self-directed learning.
D1	use a wide range of analytical tools, techniques, equipment, and software pacakage to design and develop mechatronics systems.	LO3	Differentiate between the fundamentals of modeling, system identification, and simulation in mechatronics systems.
D3	Plan, manage, and implement designs of mechatronics systems, subsystems, modules, and machine elements based on traditional and contemporary technological, professional, and computeraided tools	LO4	Illustrate the design cycle based on recognition of needs and the market feedback loop to achieve sustainable design.

4. Course Teaching and Learning Methods:

Dir Instr	uctio		Indirect Instruction						Information Technology- Assisted Learning						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
			V		V	V	V				√				

Week	Scientific content of the course	Total	Expected number of the Learning Hour				
No.	(Course Topics)	Weekly	Theoretical	Trai	ning		
	,	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other	
1	Introduction – Course information – Project information and planning – Elements of project proposal.	5	2		3		
2	Mechatronics Systems – Mechatronics key elements – Mechatronics versus multidisciplinary	5	2		3	-	
3	Design flow chart – Project Proposal approval	5	2		3		
4	Selection of sensors & Actuators- Project progress follow up.	5	2		3		
5	Control Units (Hardware based solutions)- Project progress follow up	5	2		3		
6	Control Units (Microprocessor based solutions)- Project progress follow up	5	2		3		

7	Revision and Mid Exam								
8	Simulation of Mechatronics Systems using MATLAB Project progress follow up.	5	2		3				
9	Simulation of Mechatronics Systems using SIMULINK Project progress follow up	5	2		3				
10	Control of Mechatronics Systems using MATLAB.	5	2		3				
11	Introduction to Robots & Project progress follow up	5	2		3				
12	Flexible Manufacturing Systems	5	2		3				
13	Modern trends in Mechatronics systems – Final Report and power point presentation	5	2		3				
14	Course project	5	2		3				
15,16		Fina	l Exam.						

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	10	0	10%
2	Exam 2 written (Semester work)	5	0	5%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	25	0	25%

Experiment Topics: (If any)

Serial	Experiment
1	SOLIDWORK OF MECHANICAL PAART OF PROJECT
2	Carry out design of mechanical part of project
3	Setup pcb and controller and motor selection
4	Wiring of electrical part of the project
5	Start manual project work

6	Setup an select the suitable controller
7	Carry out programing of the controller
8	Complete the project

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	JOHN BILLINGSLEY, CONTROL BASICS 2024 FOR MECHATRONICS,
(books, scientific	Other References	
references, etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	non
facilities & equipment	Supplies	non
for	Electronic Programs	non
teaching	Skill Labs/ Simulators	non
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	PROF. DR. AMAL NASSAR	Dr. Ahmed Abdalbadia
Signature	AMAL NASSAR	Seranties

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Modeling and Simulation				
Course Code (according to the bylaw):	MTE 243				
Department/s that participated in the teaching:	Mechanica	al Enginee	ring		
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>3</u>	1		4	
Course Type:	Compulsory				
The level to which the course was introduced:	SENIOR 1				
Academic Program:	Mechatronics Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr.Ahmed Abu EI -FADI				
Course Specification Approval (Attach the decision/minutes of the department /committee/council) The division council minute of department /committee/council)					
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Relevance of simulations, mathematic background, numerical methods, description using differential equations, block diagrams, system identification, display of mechanical and electrical components, modeling, subsystems, enclosure of systems –Use of the available software for simulation (Examples, MATLAB – SIMULINK- LABVIEW ..etc...)

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)			Course Learning Outcomes		
	A1,A2,D1,D2	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
A1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, andmathematics. Integrate a wide range of analytical tools, techniques, equipment, and software pacakage to design and develop mechatronics systems	LO1	Apply mathematical methods to derive input- output equations for different systems and analyze first- and second-order responses.		
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO2	Simulate mathematical models of different systems.		
D1	Integrate a wide range of analytical tools , techniques , equipment , and software pacakage to design and develop mechatronics systems	LO3	Design mechatronics systems using software tools.		
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design	LO4	Model mechanical, electrical, and mixed systems using MATLAB.		

4. Course Teaching and Learning Methods:

Direct Instructio n	Indirect Instruction	Information Technology- Assisted Learning
---------------------------	----------------------	---

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
$\sqrt{}$		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$									$\sqrt{}$

Week	Scientific content of the course	Total	Expected	number of the Learning Hours				
No.	(Course Topics)	Weekly Hours	Theoretical	Trai	ining			
	_	Hours	teaching (lectures)	Tutorial / Practical Lab		Other		
1	Introduction of Modelling	4	1	2	1	-		
2	Modeling of Translation mechanical system	4	1	2	1			
3	Modeling of rotational mechanical systems	4	1	2	1	-		
4	Modeling of electrical system	4	1	2	1	-		
5	Modeling of Mixed system	4	1	2	1	-		
6	Simulate of mechanical system	4	1	2	1	-		
7	R	evision a	and Mid Exa	m				
8	Simulate of electrical and mixedsystems	4	1	2	1	-		
9	Modeling of fluid system	4	1	2	1	-		
10	Simulate of fluid system	4	1	2	1	-		
11	First order response	4	1	2	1	-		

15,16	Final Exam.							
14	Revision	4	1	2	1	-		
13	Second order response	4	1	2	1	-		
12	Second order response	4	1	2	1	-		

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10%
2	Exam 2 written (Semester work)	10	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	20	20%

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	O. PIRONNEAN, NUMERICAL SIMULATION OF UNSTEADY FLOWS,2022
(books, scientific references,	Other References	
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	LAPTOPS
facilities & equipment	Supplies	
for	Electronic Programs	MATLAB
teaching	Skill Labs/ Simulators	non
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr.Ahmed Abu El -FADl	Dr. Ahmed Abdalbadia
Signature	Ahmed fadl	Saranling

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Electrical Machines Lap				
Course Code (according to the bylaw):	MTE 244				
Department/s that participated in the teaching:	Mechanical Engineering			<u>a</u>	
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)		<u>3</u>		<u>3</u>	
Course Type:	Compulsory				
The level to which the course was introduced:		SENIC	DR 2		
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>		
Institute:	Higher Technological Institute				
Name of Course Coordinator:	DR.AHMED SAMIR				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment	
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Safety Instructions - This lab course will introduce the theory in addition to hands on electrical machines. The topics may include, Introduction to energy conversion - Single phase transforms, construction, theory, operation and testing - D.C Motors, types and applications, construction, theory, and (torque – speed characteristics). - A.C Motors, types and applications, construction, and theory. - Single phase induction motors - Three phase induction motors - Stepper Motor, construction, operation and control& applications. and theory. - Single phase induction motors

-Three phase induction motors - Stepper Motor , construction, operation and control& applications.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acc	Program Outcomes (ARS) ording to the matrix in the program specs)	Course Learning Outcomes			
	A5&A6&A7&A8&D1&D2	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
A5	Practice research techniques and methods of investigation as an inherent part of learning	LO1	Describe the construction of D.C. machines, different windings, and their merits and demerits.		
A 6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO2	Analyze different types of D.C. generators, their characteristics, industrial applications, and the effect of armature reaction with its assessment.		
A7	Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams	LO3	Explain the principle of D.C. motors, their electrical characteristics, and industrial applications while working as a member of a team.		
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO4	Simulate the various losses in D.C. machines and their efficiency using MATLAB.		
D1	Integrate a wide range of analytical tools, techniques, equipment, and software	LO5	Analyze the circuits of different types of D.C. motors and power and speed calculation.		
	package to design and develop mechatronics systems		Identify transformers and the explanation of how they transfer energy.		

D2	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO7	Recognize the different types of tests performed on transformers, and the explanation of their purposes, also demonstration of how to apply these tests in practice.
----	--	-----	--

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Indirect Instruction					7	Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V	V		V	V	V		V	V			V	V	

Week	Scientific content of the course	Total	Expected number of the Learning Hours					
No.	(Course Topics)	Weekly	Theoretical	Trai	ning			
	• • • • • • • • • • • • • • • • • • • •	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Principle of Electromechanical Energy Conversion.	3	0	0	3	-		
2	Principle of operation for dc machines.	3	0	0	3	•		
3	D.C. Generators: Introduction and Principle of operation.	3	0	0	3	-		
4	ConstructionofD.C.GeneratorandE.M.F.Equation of a D.C. Generator.	3	0	0	3	-		

5	Types of D.C. Generators and Losses in a D.C. Machine.	3	0	0	3	-		
6	Power Stages and efficiency for dc generators with solved examples.	3	0	0	3	-		
7	R	evision a	and Mid Exa	m				
8	D.C. Motors: Introduction and Principle of operation.	3	0	0	3	-		
9	Construction of D.C. Motors and back E.M.F. Equation of a D.C. Motors.	3	0	0	3	-		
10	Types of D.C. Motors, Power Stages and efficiency for dc motors with solved examples	3	0	0	3	-		
11	Maximum Power Transfer of D.C Motors, Armature Torque and speed in D.C Motor.	3	0	0	3	-		
12	Transformer: Introduction, Construction, Principle of Operation, E.M.F Equation.	3	0	0	3	-		
13	Theory for an Ideal and actual Transformer, Practical and test transformer with solved examples.	3	0	0	3	-		
14	D.C. Motors: Introduction and Principle of operation.	3	0	0	3	-		
15,16	Final Exam.							

Experiment Topics:

Serial	Experiment					
1	Energy conversion principles using a basic electromechanical setup					
2	Study of D.C Motors: construction, types, and torque-speed characteristics					
3	Single Phase Induction Motors: starting methods and applications					
4	Three Phase Induction Motors: construction and performance analysis					
5	Testing and operation of Single Phase Transformers					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10 %
2	Exam 2 written (Semester work)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	20	20	20 %

	The main (essential) reference (must be written in full according to the scientific documentation method)	Krause, Paul C., and Thomas C. Krause. Introduction to modern analysis of electric machines and drives. John .Wiley & Sons, 2022		
Learning resources (books, scientific references, etc.) *	Other References	-De Doncker, Rik W., Duco WJ Pulle, and André Veltman. Advanced electrical drives: analysis, modeling, control. Springer Nature, 2020. 3-Murakami, Akim, and Sergey Edward Lyshevski. Electromechanical systems, electric machines, and applied mechatronics. CRC press, 2018.		
	Learning Platforms (Links must be added)	EKB - Microsoft office		
Supportive	Devices/Instruments	DC Motors, AC Motors, Three-Phase Induction Motors, Transformers, Multimeters, Tachometers		
facilities & equipment	Supplies	Wires, Connectors, Switches, Circuit Boards, Fuses, Safety Gloves		
for	Electronic Programs	MATLAB/Simulink,		
teaching and learning *	Skill Labs/ Simulators	Electrical Machine Training Kits, Motor Control Panels, Load Test Benches		
	Virtual Labs	Online simulation platforms		
	Other (to be mentioned)			

	Course Coordinator Program Coordinato			
Name	DR.AHMED SAMIR	Dr. Ahmed Abdalbadia		
Signature	AHMED SAMJR	Paraullies		

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Image Recognition			
Course Code (according to the bylaw):	MTE E04			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	4			<u>4</u>
Course Type:	Elective			
The level to which the course was introduced:	SENIOR 2			
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Dr. Sara S	edab <u>y</u>		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Introduction – Computer Vision versus biological vision – Cameras- Recognition – Identification – Detection - Content-based image retrieval - Pose estimation -Optical Character Recognition (OCR) - Applications.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acco	Program Outcomes (ARS) ording to the matrix in the program specs)	Course Learning Outcomes	
A2,A10,D1,D2,D4			n completion of the course, the student will be able to:
Code	Text	Code	Text
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO1	Implement OCR systems using suitable computer vision libraries.
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies	LO2	Distinguish between biological vision and computer vision.
D1	Integrate a wide range of analytical tools, techniques, equipment, and software packages to design and develop mechatronics systems	LO3	Apply digital imaging tools and techniques for recognition, identification, and object detection.
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design	LO4	Apply algorithms for content-based image retrieval and pose estimation.
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application	LO5	Analyze real-world applications of image recognition in automation, security, and intelligent systems

4. Course Teaching and Learning Methods:

Direct Instructio n	Indirect Instruction	Information Technology- Assisted Learning
---------------------------	----------------------	---

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$		$\sqrt{}$			$\sqrt{}$

Week	Scientific content of the course	Total	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly Hours	Theoretical	Trai	ning	0.1	
		110413	teaching (lectures)	Tutorial	/ Practical Lab	Other	
1	Introduction to Image Recognition and Computer Vision	4	2	2	0	-	
2	Biological Vision vs Computer Vision	4	2	2	0	-	
3	Digital Cameras and Image Acquisition	4	2	2	0	-	
4	Image Preprocessing and Feature Extraction	4	2	2	0	-	
5	Object Recognition and Identification Techniques	4	2	2	0	-	
6	Detection and Classification of Visual Objects	4	2	2	0	-	
7	R	evision a	and Mid Exa	m			
8	Content-Based Image Retrieval (CBIR)	4	2	2	0	•	
9	Pose Estimation and Object Tracking	4	2	2	0	-	
10	Optical Character Recognition (OCR) Techniques	4	2	2	0	•	
11	Tools and Libraries: OpenCV, Tesseract, TensorFlow	4	2	2	0	-	

12	Performance Evaluation of Image Recognition Systems	4	2	2	0	-	
13	Applications: Robotics, Surveillance, Smart Devices	4	2	2	0	•	
14	Project Presentations and Future Trends	4	2	2	0	-	
15,16	Final Exam.						

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	12	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-13	20	20%

Learning resources (books, scientific	The main (essential) reference (must be written in full according to the scientific documentation method)	Programming Computer Vision with Python: Tools and algorithms for analyzing images (Updated Edition, 2020) Author: Jan Erik Solem
references, etc.) *	Other References	
	Learning Platforms (Links must be added)	EKB - Microsoft office
	Devices/Instruments	Laptop
Supportive	Supplies	
facilities & equipment for teaching	Electronic Programs	OpenCV (Python or C++) Tesseract OCR MATLAB (Image Processing Toolbox)
and	Skill Labs/ Simulators	non
learning *	Virtual Labs	non
	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr. Sara	Dr. Ahmed Abdalbadia
Signature	Sara	Paraulling

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Microcontroller Applications			<u>ons</u>
Course Code (according to the bylaw):	MTE E05			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	4			4
Course Type:	Elective			
The level to which the course was introduced:	SENIOR 2			
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Dr. Mina R	aafat		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Software development tools (simulators) -Interfacing common peripherals --ADC, DAC, and sensor interfacing -Interfacing with external memory -Motor Control – Relay – PWM - DC and stepper motor -Design & Implement of a microcontroller based Mechatronics system (Small course project).

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acco	Program Outcomes (ARS) ording to the matrix in the program specs)	Course Learning Outcomes			
	A2,A4,A10,D1,D2	Upo	n completion of the course, the student will be able to:		
Code	Text	Code	Text		
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO1	Use simulation tools and embedded programming environments for microcontroller development		
A4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO2	Utilize contemporary microcontroller development platforms while considering safety, quality, and reliability		
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies	LO3	Demonstrate independent learning through a microcontroller-based project		
D1	Integrate a wide range of analytical tools, techniques, equipment, and software packages to design and develop mechatronics systems.	LO4	Use simulation tools and embedded programming environments for applying knowledge of sensors, ADC/DAC, and memory interfacing in microcontroller-based systems.		
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design.	LO5	Apply knowledge of sensors, ADC/DAC, and memory interfacing in microcontroller-based systems.		

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Indirect Instruction						Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
V	1	V	V	V	1	1	V			1		V			V

Week	Scientific content of the course	Total	Expected	number of	the Learning) Hours
No.	(Course Topics)	Weekly	Theoretical	Trai		
	• · ·	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
1	Introduction to Microcontroller Applications & Architecture Overview	4	2	2	0	-
2	Microcontroller Development Tools and Simulators	4	2	2	0	-
3	Digital I/O and Bit Manipulation Programming	4	2	2	0	-
4	ADC/DAC Interfacing – Analog Sensor Applications	4	2	2	0	-
5	Interfacing with External Memory (EEPROM, Flash)	4	2	2	0	-
6	Display Interfacing (LCD/Seven Segment)	4	2	2	0	-
7	R	evision a	and Mid Exa	m		
8	Relay Control & Switching Circuits	4	2	2	0	-
9	PWM Concepts and Generation Using Microcontrollers	4	2	2	0	-

10	DC Motor Control using PWM and Relays	4	2	2	0	•		
11	Stepper Motor Control – Sequencing & Speed Control	4	2	2	0	-		
12	System Design: Microcontroller-Based Mechatronics System	4	2	2	0	-		
13	Project Development and Testing	4	1	1	2	-		
14	Project Presentations	4	1	1	2	•		
15,16	Final Exam.							

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	13	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-14	20	20%

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	"PROGRAMMABLE MICROCONTROLLERS" CEM UNSALAN(2018)
resources (books, scientific references, etc.) *	Other References	"Programming PIC Microcontrollers with XC8: Mastering Classical Embedded Design (Maker Innovations Series) ",Armstrong Subero Second Edition(2024)
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Laptop
facilities & equipment	Supplies	Project components
for	Electronic Programs	MPLAB, Proteus
teaching	Skill Labs/ Simulators	non
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr. Mina Raafat	Dr. Ahmed Abd Elbadie
Signature	Mina Raafat	Paraullus

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Artificial Intelligence				
Course Code (according to the bylaw):	MTE E06				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>4</u>			<u>4</u>	
Course Type:	Elective				
The level to which the course was introduced:	SENIOR 2				
Academic Program:	Mec	hatronics	Engineerir	<u>1g</u>	
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Sara G. Seadby				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:		8/12/2	025		

2. Course Overview (Brief summary of scientific content):

Introduction to machine intelligence, neural networks, expert systems, fuzzy logic, robotics control, image processing, industrial applications, and emerging trends in Al.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acc	Program Outcomes (ARS) ording to the matrix in the program specs)	Course Learning Outcomes			
	A1,A2,A10,D2,D4	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
A1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	LO1	Analyze AI paradigms and their mathematical foundations		
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO2	Design neural networks and fuzzy logic systems.		
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO3	Discover current and upcoming AI trends.		
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design	L04	Implement robotic control using AI.		
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO5	Assess AI applications in image processing and automation.		

4. Course Teaching and Learning Methods:

Direct Instructio	Indirect Instruction	Information Technology-
n		Assisted Learning

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$

Week	Scientific content of the course	Total	Expected	number of	the Learning	Hours
No.	(Course Topics)	Weekly Hours	Theoretical	Trai		
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
1	introduction to AI & Intelligent Agents	4	2	2	0	-
2	introduction to AI & Intelligent Agents	4	2	2	0	-
3	introduction to AI & Intelligent Agents	4	2	2	0	-
4	Search Algorithms (BFS, DFS, A*)	4	2	2	0	•
5	Search Algorithms (BFS, DFS, A*)	4	2	2	0	•
6	Machine Learning Fundamentals	4	2	2	0	-
7	R	evision a	and Mid Exa	m		
8	Neural Networks & Deep Learning	4	2	2	0	-
9	Neural Networks & Deep Learning	4	2	2	0	-
10	Neural Networks & Deep Learning	4	2	2	0	-
11	Machine Vision & Robotics	4	2	2	0	•
12	Machine Vision & Robotics	4	2	2	0	-

13	Machine Vision & Robotics	4	2	2	0	-
14	Machine Vision & Robotics	4	2	2	0	-
15,16		Fina	l Exam.			

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	10	10%
2	Exam 2 written (Semester work)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	20	20%

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	Primary: Russell & Norvig, <i>Artificial Intelligence: A Modern Approach</i>
(books, scientific	Other References	
references, etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	non
facilities &	Supplies	non
equipment for	Electronic Programs	non
teaching	Skill Labs/ Simulators	non
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr. Sara G.Seadby	Dr. Ahmed Abdalbadia
Signature	<mark>Sara</mark>	Serenthis

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Automotive Hydraulic and Pneumatic				
Course Code (according to the bylaw):	AUT E77				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	4			4	
Course Type:	Elective				
The level to which the course was introduced:	SENIOR 2				
Academic Program:	Mechatronics Engineering				
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Hossam Ramadan				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Hydraulic basics, pumps, motors, valves, cylinders, accumulators, automotive hydraulic systems (power steering, transmission, hydrodynamic drive of fan, etc.), pneumatic systems (air valves, air brakes, etc.), air cushioned vehicles.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes		
A2, A4, A10, D1, D4			n completion of the course, the student will be able to:	
Code	Text	Code	Text	
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions	LO1	Conduct simulations and analyzing performance data of hydraulic and pneumatic systems in automotive applications.	
A 4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO2	Apply safety, quality, and environmental standards when analyzing or designing automotive fluid power systems.	
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO3	Explore modern advancements in hydraulic and pneumatic automotive technologies through independent study	
D1	Integrate a wide range of analytical tools, techniques, equipment, and software packages to design and develop mechatronics systems	LO4	Use simulation tools to model and testing automotive hydraulic and pneumatic circuits.	
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO5	Evaluate the performance of fluid power components under variable input conditions to assess application suitability.	

4. Course Teaching and Learning Methods:

Direct		Information
Instructio	Indirect Instruction	Technology-
n		Assisted Learning

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
$\sqrt{}$				$\sqrt{}$		$\sqrt{}$				$\sqrt{}$					$\sqrt{}$

Week	Scientific content of the course	Total	Expected	Expected number of the Learning Hou					
No.	(Course Topics)	Weekly	Theoretical	Trai					
	- · · · · · · · · · · · · · · · · · · ·	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other			
1	Introduction to Automotive Hydraulics and Pneumatics	4	2	2	0	-			
2	Hydraulic Fluid Properties and Basic Concepts	4	2	2	0	-			
3	Hydraulic Pumps and Motors	4	2	2	0	-			
4	Valves and Hydraulic Control Components	4	2	2	0	-			
5	Hydraulic Cylinders and Accumulators	4	2	2	0	-			
6	Hydraulic Circuits: Analysis and Design	4	2	2	0	-			
7	R	evision a	and Mid Exa	m					
8	Power Steering and Hydraulic Transmission Systems	4	2	2	0	-			
9	Hydrodynamic Fan Drives and Couplings	4	2	2	0	-			
10	Pneumatic Systems and Air Valves	4	2	2	0	-			
11	Air Brakes and Vehicle Pneumatic Circuits	4	2	2	0	-			
12	Air-Cushioned Vehicles and Suspension Concepts	4	2	2	0	-			

13	Performance Evaluation and Fault Diagnosis	4	2	2	0	-
14	Modern Trends and Future Technologies in Automotive Fluid Power	4	2	2	0	-
15,16	Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	12	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-13	20	20%

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	"Automotive Hydraulic and Pneumatic Systems" Author: R. K. Rajput(2021)
scientific references,	Other References	
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Laptop
Supportive facilities &	Supplies	
equipment for teaching	Electronic Programs	FluidSIM for circuit simulation, MATLAB/Simulink for pressure/flow analysis
and	Skill Labs/ Simulators	non
learning *	Virtual Labs	non
	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr. Hossam Ramadan	Dr. Ahmed Abdalbadia
Signature	Hossam Ramadan	Paraulling

The Higher Technological Institute (HTI) – 10th of Ramadan City

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	B.Sc. Project 2			
Course Code (according to the bylaw):	MTE 250			
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>1</u>	<u>6</u>		<u>7</u>
Course Type:	Compulsory			
The level to which the course was introduced:	SENIOR 2			
Academic Program:	<u>Mechatror</u>	nics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Prof.Dr.EMAN Ibrahim			n
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:	8/12/2025			

1. Course Overview (Brief summary of scientific content):

Based on the results obtained from the phase (1) of the project, the student(s) complete(s) the assigned task. This includes: Realization phase, and finishing and testing phase. A final report, a presentation, and a model (Hardware and/or software) are required in addition to oral defense on front of an examination board.

The student should show how the following are considered in his work,

a) The economic justification of the project.

- b) Quality aspect.
- c) Safety
- d) Environment.

The fulfillment of the project should prove that the student has satisfactorily achieved the following:-

- Understanding of both theoretical and practical aspects of the problem in his project;
- Ability to search for references and to survey modern technology in relation to Mechatronics Engineering;
- Ability to suggest solution for the problem and the acceptable and useful conclusions of his work.
- Ability to express his ideas and present his project in the acceptable form.

2. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Progra	m Outcomes (ARS)			
(according to the matrix in the program specs)		Course Learning Outcomes		
•		Upon completion of the course, the studen will be able to:		
Code	Text	Code	Text	
A 5	Practice research techniques and methods of investigation as an inherent part of learning.	LO1	Investigate modern technologies and reference materials to guide testing and validation of the project.	
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements	LO2	Supervise and monitoring the realization, testing, and integration phases of the project within planned timeframes	
A7	Function efficiently as an individual and as a member of multi-disciplinary and multi-cultural teams.	LO3	Collaborate effectively in multi- disciplinary teams to implement, test, and finalize the project	
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO4	Produce a professional technical report, oral presentation, and defensing with clear graphical and verbal communication	

A9	Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	LO5	Demonstrate creativity and leadership in addressing challenges during implementation and proposing innovative improvements.
B2	Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field	LO6	Execute mechanical design elements using CAD and traditional tools, ensuring feasibility in construction and testing
B4	Adopt suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and maintain mechanical equipment and systems	LO7	Apply economic justification, quality assurance, safety, and environmental considerations in the realization of the project
D3	Plan, manage, and implement designs of mechatronics systems, subsystems, modules, and machine elements based on traditional and contemporary technological, professional, and computer-aided tools.	LO8	Implement and integrating mechatronics system components (mechanical, electrical, digital/software) into a working prototype
D4	Estimate and measure the performance of an electrical/electronic/digital/mec hatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO9	Test and evaluating the performance of the realized system under defined conditions, drawing meaningful conclusions

Direct Instructio	Indirect Instruction	Information Technology-
n		Assisted Learning

	Lectures
	Tutorial / Practical
V	Brain Storming
V	Project based learning
<mark>√</mark>	Case Study
<mark>√</mark>	Problem Base
<mark>√</mark>	Reports & Research
<mark>√</mark>	Discussion
	Field Training
	Site Visit
<mark>√</mark>	Self-Learning
<mark>√</mark>	Discovery Learning
<mark>√</mark>	Simulation Programs
<mark>√</mark>	Virtual labs
V	E-Learning
√	Al in Education

Week	Scientific content of the course	Total	Expecte Lea	ed number rning Hou	of the	
No.	(Course Topics)	Weekly Hours	Theoretical teaching		ning / Practical	OTHERS
			(lectures)	Tutorial	Lab	
1	Review of approved design and project scope (from B.Sc. Project 1)	7	1	0	6	-
2	Planning realization phase: allocation of tasks, procurement of components	7	1	0	6	
3	Implementation of mechanical elements	7	1	0	6	-
4	Implementation of electrical/electronic/digital modules	7	1	0	6	•
5	System integration workshop	7	1	0	6	-
6	Testing methodologies and experimental planning	7	1	0	6	-
7		F	Revision			
8	Economic justification of the project	7	1	0	6	-
9	Quality aspects: applying standards and codes	7	1	0	6	-
10	Safety and environmental considerations in project realization	7	1	0	6	-
11	Performance evaluation and data analysis	7	1	0	6	•

Page **4** of **5**

12	Drafting the final report (structure, formatting, results)	7	1	0	6	-
13	Oral presentation and defense rehearsal	7	1	0	6	-
14	Final submission: report,	7	1	0	6	-
15,16	Final presentation, prototype, oral defense					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Project Implementation & Realization	15	25	25%
2	Testing & Performance Evaluation	15	20	20%
3	Economic, Safety, Quality & Environmental Considerations	15	15	15%
4	Final Written Report	14	20	20%
5	Oral Presentation & Defense	15	20	20%

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2019). <i>Engineering Design:</i> A Systematic Approach (3rd Edition)
(books, scientific references, etc.) *	Other References	Ullman, D. G. (2021). <i>The Mechanical Design Process</i> (7th Edition).
	Electronic Sources (Links must be added)	Egyptian Knowledge Bank: https://www.ekb.eg/ar/home
Supportive facilities &	Devices/Instruments	Laptop Oscilloscopes, multimeters, sensors
equipment	Supplies	Project components
for teaching and learning *	Electronic Programs	SolidWorks, AutoCAD, MATLAB/Simulink, ANSYS MS Word

	Course Coordinator	Program Coordinator
Name	Prof. Dr. Eman Nassar	Dr. Ahmed Abdalbadia
Signature	الله المعربي إن ذاله	Rulling

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Automotive Maintenance and Planning			
Course Code (according to the bylaw):		<u>AUT I</u>	<u>E79</u>	
Department/s that participated in the teaching:	Mechanical Engineering			
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>4</u>			<u>4</u>
Course Type:		Elect	ive	
The level to which the course was introduced:		SENIC	OR 2	
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	ogical Inst	itute
Name of Course Coordinator:	Dr. Hossai	m Ramada	<u>ın</u>	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Planning and management of a modern automobile service center, planned based preventive maintenance and conditioned based maintenance, plan of fleet utilization, plan of preventive maintenance, plan of repair, workshop planning (layout, norms of production rates, repair capacity of workshop, planning for spare parts).

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	m Outcomes (ARS) ng to the matrix in the program	m Course Learning Outcomes		
	A2, B1, B3, D4	Upon com be able to:	pletion of the course, the student will	
Code	Text	Code	Text	
	Develop and conduct appropriate experimentation and/or simulation, analyze and		Select appropriate equipment based on the requirements of engine systems and component performance.	
A2	interpret data, assess, and evaluate findings, and use statistical analyses and objective engineering	LO2	Analyze the causes of faults in engine mechanical components and engine systems.	
B1	Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field Plan, manage and carry out designs of mechanical systems and machine elements using appropriate materials both traditional means and computer-aided tools and software contemporary to the mechanical engineering field	LO3	Evaluate performance of engine mechanical component, and engine systems.	
В3	Select conventional mechanical equipment according to the required performance.	LO4	Explain the concepts of maintenance and testing of engine mechanical components and engine systems.	
D4	Estimate and measure the performance of an electrical/electronic/ digital/mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO5	Apply maintenance and testing procedures to engine mechanical components and engine systems.	

Direct Instru n		Indirect Instruction				Information Technology- Assisted Learning									
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	$\sqrt{}$	$\sqrt{}$				$\sqrt{}$	√								

Week	Week Scientific content of the course		Expected number of the Learning Hou			
No.	(Course Topics)	Weekly	Theoretical	Trai	ining	
1,0.		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other
	Engine mechanical					
1	component maintenance, and diagnostics	4	2	2	-	-
2	Engine mechanical component maintenance, and diagnostics	4	2	2	-	-
3	Engine mechanical component maintenance, and diagnostics.	4	2	2	-	-
4	Fuel system (petrol) maintenance, and diagnostics.	4	2	2	-	-
5	Fuel system (petrol) maintenance, and diagnostics.	4	2	2	-	-
6	Fuel system (petrol) maintenance, and diagnostics	4	2	2	-	-
7	Revision and Mid Exam					
8	Cooling system maintenance, and diagnostics.	4	2	2	-	-
9	Lubricating system maintenance, and diagnostics.	4	2	2	-	-

10	Ignition system maintenance, and diagnostics.	4	2	2	-	-
11	Ignition system maintenance, and diagnostics.	4	2	2	1	1
12	Diagnostics of engine faults.	4	2	2	-	-
13	Diagnostics of engine faults.	4	2	2	-	-
14	Revision	4	2	2	-	-
15,16	Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	3	10	10%
2	Exam 2 written (Semester work)	10	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	As	20	20 %
		Scheduled		

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	N.DELHI, "AUTOMOTIVE TECHNOLOGY", 2019
resources (books,	Other References	
scientific references,	Electronic Sources (Links must be added)	
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	NON
facilities &	Supplies	NON
equipment	Electronic Programs	NON

for	Skill Labs/ Simulators	NON
teaching	Virtual Labs	NON
and learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Dr. Hossam Ramadan	Dr. Ahmed Abdalbadia
Signature	Hossam Ramadan	Paraulling

Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Mechatronics Applications in Automobiles			
Course Code (according to the bylaw):	AUT E80			
Department/s that participated in the teaching:	Mechanical Engineering			<u>g</u>
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	4			<u>4</u>
Course Type:		Elect	ive	
The level to which the course was introduced:		SENIC	OR 2	
Academic Program:	Mechatron	ics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	ogical Inst	itute
Name of Course Coordinator:	Dr. Mina R	aafat		
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Introduction, sensors & actuators, control systems, modern control systems, engine control systems, transmission control systems, braking system control (ABS,), drive management systems (management of ABS, ASR, and differential lock applications), suspension & steering control, other systems (door looking electric control, etc), diagnostic systems – Modern trends – Small course project.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acco	Program Outcomes (ARS) ording to the matrix in the program specs)	Course Learning Outcomes			
	A2, A4, D1, D2	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO1	Analyze and interpreting data from automotive mechatronic systems using simulation or real-time input.		
A 4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO2	Apply appropriate sensor/actuator technologies and safety standards in automotive control applications		
	Integrate a wide range of analytical tools , techniques , equipment , and software	LO3	Demonstrate knowledge of modern trends in automotive mechatronics through independent learning		
D1	pacakage to design and develop mechatronics systems	LO4	Use tools such as MATLAB/Simulink or automotive- specific software to modeling and simulating vehicle subsystems		
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design	LO5	Design control strategies for key automotive systems such as braking, suspension, and engine management.		

4. Course Teaching and Learning Methods:

Direct Instructio n	Indirect Instruction	Information Technology- Assisted Learning
---------------------------	----------------------	---

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
$\sqrt{}$	$\sqrt{}$	V		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				$\sqrt{}$		√			$\sqrt{}$

Week	Scientific content of the course	Total	Expected	Expected number of the Learning Hours						
No.	(Course Topics)	Weekly	Theoretical	Trai						
	(Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other				
1	Introduction to Mechatronics in Automobiles	4	2	2	0	•				
2	Automotive Sensors: Types and Functions	4	2	2	0	-				
3	Automotive Actuators: Solenoids, Motors, Valves	4	2	2	0	•				
4	Basics of Automotive Control Systems	4	2	2	0	•				
5	Modern Control Architectures (ECUs, CAN, LIN)	4	2	2	0					
6	Engine Management Systems (EMS)	4	2	2	0	-				
7	R	evision a	and Mid Exa	m						
8	Transmission Control Systems (e.g., CVT, DCT)	4	2	2	0	-				
9	ABS and Braking System Control	4	2	2	0	-				
10	Drive Management: ABS + ASR + Differential Lock	4	2	2	0	-				
11	Suspension & Steering Control Systems	4	2	2	0	-				

12	Diagnostic Systems (OBD-II, CAN sniffing)	4	2	2	0						
13	Modern Trends: ADAS, EVs, Autonomous Features	4	2	2	0	-					
14	Project Presentation	4	2	2	0	-					
15,16	Final Exam.										

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	12	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-13	20	20%

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	"Mechatronics and Control of Electromechanical Systems "(2nd ed.) Author: Sergey Edward Lyshevski(2022)				
scientific	Other References					
references, etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office				
Supportive	Devices/Instruments	Laptop				
Supportive facilities & equipment for	Supplies	Arduino / Raspberry Pi (for real-world simulation)				
teaching	Electronic Programs	MATLAB/Simulink				
and	Skill Labs/ Simulators	NON				
learning *	Virtual Labs	NON				
	Other (to be mentioned)	NON				

	Course Coordinator	Program Coordinator
Name	Dr. Mina Raafat	Dr. Ahmed Abd Elbade
Signature	Mina Raafat	Saranling

The Higher Technological Institute (HTI) – 10th of Ramadan City

Department of Basic Sciences

Course Specification

Course name:

Introduction to Accounting

Course Code: HUM 201

Department participating in delivery of the course	Basic Sciences

1. Basic information:

Course Type		Elec	ive		Academic which the is tau	e course	SENIOR 2			
Term/ Academic year	Oct.		2025/20	2025/2026		Hours:	2			
Contact Hours	Lecture:	2	Tutorial:	0	Lab.:	0	Total	2		
Pre-Requisite										
Academi	NARS 2018									
Bylaw	Approval		2016							
Course (Coordinato	r								
Course Specifica	7/26/2025									
Course Specif	The division council minute of department									

2. Course Overview (Brief summary of scientific content):

The scientific frame of accounting: accounting concept & objectives, acceptable principles of accounting, accounting branches, types of institutions - financial statement: balance sheet, income statement, ownership proprietary statement, cash flows statement - double entry & analysis of financial transactions: accounting continuous balance of the financial position formula, debit & credit items financial position formula – the accounting cycle: business documents, the journals the ledgers' commercial documents according to the Egyptian laws. Journalizing & recording the commercial transactions of the firm, transactions of the owner of the firm, commercial papers & documents different types of revenues & expenditure. Trail Balance: Trail balance concept & objectives, its balance & imbalance corrections in the imbalance cases. A brief presentations of accounting in the types of companies as partnerships, limited partnerships & corporation.

3. Course Learning Outcomes CLOs:

$Matrix\ of\ course\ learning\ outcomes\ CLOs\ with\ program\ outcomes\ POs\ (NARS/ARS).$

	ram Outcomes (NARS/ARS) Iding to the matrix in the program specs)		Course Learning Outcomes
	(A6,A8, A9, A10)	Upon co	ompletion of the course, the student will be able to:
Code	Text	Code	Text
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO1	Design the presentations of accounting in she types of companies as partnerships, limited partnerships & corporation.
		LO2	Interpret the main concepts of basic financial accounting.
А8	Communicate effectively – graphically, verbally and in	LO3	Infer the main principle of basic financial statements.
	writing – with a range of audiences using contemporary tools.	LO4	Elucidate the principal of balance sheet, income statement, ownership proprietary statement, cash flows statement - double entry & analysis of financial transactions.
A9	Use creative, innovative and flexible thinking and acquire entrepreneurial and	LO5	Clarify the accounting continuous balance of the financial position formula, debit & credit items financial position formula.
A9	leadership skills to anticipate and respond to new situations.	LO6	Evaluate the accounting cycle: business documents, the journals the ledgers' commercial documents according to the Egyptian laws.
		L07	Assess the trail balance concept & imbalance corrections in the imbalance cases.
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies	LO8	Record the commercial transactions of the firm, transactions of the owner of the firm, commercial papers & documents different types of revenues & expenditure.
		LO9	Mange as member in a teamwork .
		LO10	Illustrate the gained knowledge orally.

Dir Instru	uctio	Indirect Instruction						Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
		√				√	√			√				V	

Week	Scientific content of the course	Total	Expecte Lea	LOs		
No.	(Course Topics)	Weekly	Theoretical	Trai	covered by	
	• ,	Hours	teaching (lectures)	Tutorial	/ Practical Lab	course
1	Basic concepts of financial accounting in individual projects.	2	2	0	0	LO5
2	Budget equation.	2	2	0	0	LO9
3	Basic financial statements.	2	2	0	0	LO1
4	Double cod theory.	2	2	0	0	LO4
5	Posting for the ledger	2	2	0	0	LO2&LO7
6	Inventory adjustments	2	2	0	0	LO2&LO5
7		Revision	and Mid Exa	m		

8	Journalizing & recording the commercial transactions of the firm, transactions of the owner of the firm, commercial papers & documents different types of revenues & expenditure	2	2	0	0	LO3 , LO4&LO5		
9	Preparing financial statements (final accounts and budget).	2	2	0	0	LO6		
10	Trail Balance: Trail balance concept & objectives, its balance & imbalance corrections in the imbalance cases.	2	2	0	0	LO5&LO6		
11	A brief presentation of accounting in the types of companies as partnerships, limited partnerships & corporation	2	2	0	0	LO5		
12	Supplementary Material and Quiz	2	2	0	0	LO6		
13	Presentations	2	2	0	0	LO6		
14	Final Exam.							

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	QUIZ 1 written (Semester work)	4	10	10%
2	QUIZ 2 written (Semester work)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15	40	40 %
5	Assignments (Report &Sheet)	10,12	20	20%

Learning resources (books, scientific references, etc.) *	The main (essential) reference (must be written in full according to the scientific documentation method)	Available Presentation (handed to students' part by part).
---	---	--

	Other References	Mohamed Sabri El Attar, Mansoura Hamed& Ahmed El-Sabagh, Principles of financial Accounting, Cairo University.2020
	Electronic Sources (Links must be added)	 https://www.oreilly.com/library/view/financial-accounting-in/9780470635292/ch03sec3.html https://www.coursera.org/learn/financial-accounting https://open.umn.edu/opentextbooks/textbooks/640
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Notebook and data show equipped lecture room.
facilities & equipment	Supplies	Teaching aids and computers.
for	Skill Labs/ Simulators	
teaching and learning *	Other (to be mentioned)	Notebook and data show equipped lecture room.

	Course Coordinator	Program Coordinator
Name		Prof. Ahmed Abd El-Gafar
Signature		Julie)

The Higher Technological Institute (HTI) – 10th of Ramadan City

Department of Basic Sciences

Course Specification

Course name: English Literature | Course Code: HUM 202

1. Basic information:

Course Type		Elec	ive		Academic level at which the course is taught		SENIOR 2			
Term/ Academic year	Oct	•	2025/20	2025/2026		Credit Hours:				
Contact Hours	Lecture:	2	Tutorial:	0	Lab.:	0	Total	2		
Pre-Requisite			_	English (1)						
Academi	NARS 2018									
Bylaw	Approval		2016							
Course C	Coordinato	r	Dr. Mai Abouzaid							
Course Specifica	7/26/2025									
Course Specif	The division council minute of department									

2. Course Overview (Brief summary of scientific content):

Introduction to the forms of literature, short story, novel, drama and poetry. Developing students' critical ability through carefully selected sample literary texts.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	ram Outcomes (NARS/ARS) rding to the matrix in the program specs)	Course Learning Outcomes				
	(A8, A9, A10)	Upon completion of the course, the student will be able to:				
Code	Text	Code	Text			
	Eulanas and Davidson the	LO1	Enhance students' abilities in reading English Literature			
	Enhance and Develop the students' abilities and awareness for appropriate analysis and interpretation to all the scientific topics written in English words.	LO2	Developing reading stratgies for different purposes.			
A8		LO3	Study different types and geners of English Literature(poetry, novel, drama and short stories).			
	iii Englisii wolus.	LO4	Work effectively in team of multi- disciplinary or multi-culture.			
А9	Communicate effectively, verbally and in writing with a range of audiences.	LO5	Apply the four skills of language freely with particular emphasis on dealing with literary works.			
A10	Acquire and apply new knowledge and practice through English language.	LO6	Express themselves in English with confidence, especially while evaluating and criticizing the literary work.			
	unougn English language.	LO7	Comprehening various texts, including literary and informational materials.			

Dir Instr	uctio	Indirect Instruction A					ŗ	Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
1		$\sqrt{}$				$\sqrt{}$	$\sqrt{}$							√	

Week	Scientific content of the course	Total	Lea	ed number arning Hou		LOs	
No.	(Course Topics)	Weekly Hours	Theoretical teaching	Trai	covered by course		
			(lectures)	Tutorial	/ Practical Lab		
1	Introduction to Literature, Poetry and Short Stories	2	2	0	0	LO1	
2	The Necklace by Guy de Maupassant	2	2	0	0	LO3	
3	Nice Girl by Sherwood Anderson	2	2	0	0	LO4	
4	Anton Chekov's Small Fry.	2	2	0	0	LO1	
5	Earnest Hemingway's The Old Man at the Bridge	2	2	0	0	LO2&LO7	
6	Vendetta by Guy de Maupassant	2	2	0	0	LO2&LO5	
7	R	Revision	and Mid Exa	am			
8	Sir Walter Raleigh's poems.	2	2	0	0	LO3, LO4&LO5	
9	Shakespeare's Poems	2	2	0	0	LO6	
10	Christopher Marlowe's Poems	2	2	0	0	LO5&LO6	
11	Supplementary Material and Quiz	2	2	0	0	LO6	
12	Supplementary Material and Quiz	2	2	0	0	LO5	
13	Presentations	2	2	0	0	LO7	
14		Fin	al Exam.				

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	QUIZ 1 written (Semester work)	4	10	10%
2	QUIZ 2 written (Semester work)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15	40	40 %
5	Assignments (Report &Sheet)	10,12	20	20%

	The main (essential) reference (must be written in full according to the scientific documentation method)	"English Literature"; HTI; Available Hard copy. Available Presentation (handed to students' part by part).
		1- History of English Literature by Edward Albert. London: Routledge, 2019.
Learning resources (books, scientific	Other References Electronic Sources (Links must be added)	2- Arabic Literature in Translation. Cairo: The American University in Cairo, 2022.
references, etc.) *		3-The Complete Works of William Shakespeare. London: Canterbury
		Classics, 2023. 4- The Norton Anthology of World Literature. London: Norton, 2023.
		https://englishworld.com/
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive facilities &	Devices/Instruments	Notebook and data show equipped lecture room.
equipment	Supplies	Teaching aids and computers.
for teaching and learning *	Other (to be mentioned)	Notebook and data show equipped lecture room.

	Course Coordinator	Program Coordinator
Name	Dr. Mai Abouzaid	Prof. Ahmed Abd El-Gafar
Signature	Mai Abouxaid	- Wellied

The Higher Technological Institute (HTI) – 10th of Ramadan City

Course Specification

Course name: Trade Law Course Code: HUM 203

Department participating in delivery of the course	Basic Sciences

1. Basic information:

Course Type	Elective			Academic level at which the course is taught		SENIOR 2		
Term/ Academic year	Oct	•	2025/20	26	Credit I	Hours:	2	
Contact Hours	Lecture:	2	Tutorial:	0	Lab.:	0	Total	2
Pre-Requisite			_					
Academic standards			NARS 2018					
Bylaw	Approval		2016					
Course Coordinator								
Course Specification Approval Date			7/26/2025					
Course Specification Approval			The division council minute of department					

2. Course Overview (Brief summary of scientific content):

Kinds of contracts, contract constituents, contract administration, the limitations as imposed by law, disputes, claims, arbitration, the legal variables encountered in business and commercial transactions.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	ram Outcomes (NARS/ARS) rding to the matrix in the program specs)		Course Learning Outcomes	
	(A7,A8,A10)	Upon co	ompletion of the course, the student will be able to:	
Code	Text	Code	Text	
A7	Function efficiently as an individual and as a member of	LO1	Assess issues of the latest knowledge about the concepts, characteristics, and types of contracts, contract constituents	
	multi-disciplinary and multi- cultural teams.	LO2	Explain the main principle of Role of contracts: concept, attributes, and principles	
	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO3	Elucidate the main principal Dynamic nature of contract administration,	
A8		 with a range of audiences 		LO4
	g i f j	LO5	Design the , the legal variables encountered in business	
		LO6	Solving problems related to commercial transactions.	
		LO7	Evaluating search results, the limitations as imposed by law,	
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies	LO8	Describe the main concepts of the basics of the legal variables encountered in business and commercial transactions.	
		LO9	Working in a team group	
		LO10	Presentation techniques in performance and dealing with others and outside the organization	

Dir Instru n	uctio		Indirect Instruction					7	Inforn Fechn isted	ology	-				
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
$\sqrt{}$		√				$\sqrt{}$	$\sqrt{}$			$\sqrt{}$				√	

Week	Scientific content of the course	Total	Expecte Lea	LOs		
No.	(Course Topics)	Weekly Hours	Theoretical	Trai	covered by	
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	course
1	Fundamental of definition concepts, characteristics Trade Law - Dynamic nature and Kinds of contracts	2	2	0	0	LO5
2	Continued	2	2	0	0	LO4
3	Concepts and requirement of contract constituents,-concepts and requirement of contract administration	2	2	0	0	LO3
4	Continued	2	2	0	0	LO4
5	Cooperative and competitive negotiations- how to use the limitations as imposed by law	2	2	0	0	LO2&LO7
6	Continued	2	2	0	0	LO2&LO5
7	Revision and Mid Exam					

8	Good preparation of disputes, claims- the legal variables - the legal variables encountered in business	2	2	0	0	LO3, LO4&LO5
9	Continued	2	2	0	0	LO6
10	Commercial transactions- the legal variables encountered in commercial transactions	2	2	0	0	LO5&LO6
11	Continued	2	2	0	0	LO5
12	The limitations as imposed by, disputes, claims, arbitration	2	2	0	0	LO6
13	Supplementary materials and Quiz	2	2	0	0	LO2
14	Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	QUIZ 1 written (Semester work)	4	10	10%
2	QUIZ 2 written (Semester work)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15	40	40 %
5	Assignments (Report &Sheet)	10,12	20	20%

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	Available Presentation (handed to students' part by part).
resources (books,	Other References	محمد عبد الكريم يوسف-"الصياغة القانونية للعقود التجارية ,2021
scientific references, etc.) *	Electronic Sources (Links must be added)	https://www.edx.org/learn/business- administration
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office

Supportive facilities &	Devices/Instruments	Notebook and data show equipped lecture room.
equipment	Supplies	Teaching aids and computers.
for	Skill Labs/ Simulators	
teaching and	24 (to Leaves Cores I)	Notebook and data show equipped lecture
learning *	Other (to be mentioned)	room.

	Course Coordinator	Program Coordinator
Name		Prof. Ahmed Abd El-Gafar
Signature		- Lieble)

The Higher Technological Institute (HTI) – 10th of Ramadan City

Department of Basic Sciences

Course Specification

Course name: Entrepreneurship | Course Code: HUM 206

1. Basic information:

Course Type		Elec	tive		Academic level at which the course is taught		SENIOR 2	
Term/ Academic year	Oct	•	2025/20	2025/2026		Credit Hours:		
Contact Hours	Lecture:	2	Tutorial:	0	Lab.:	0	Total	2
Pre-Requisite								
Academi	NARS 2018							
Bylaw	2016							
Course C								
Course Specification Approval Date			7/26/2025					
Course Specification Approval			The division council minute of department					

2. Course Overview (Brief summary of scientific content):

Preparation of students to consider his own small business project: Introduction to entrepreneurship, Definition of different project scales, characteristics of small project, planning of small project, small project organization, small project control, performance evaluation. Application course project

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	ram Outcomes (NARS/ARS) rding to the matrix in the program specs)	(Course Learning Outcomes
	(A6,A8,A10)	Upon co	ompletion of the course, the student will be able to:
Code	Text	Code	Text
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO1	Evaluate the financing a business; costs and pricing, accounting; bookkeeping, and financial reporting; the role of the government in business; regulations, and laws; working with others; and successfully managing employees.
		LO2	Working in a team group.
		LO3	Describe the basics of planning and launching a business
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences	LO4	Recognize the real-life tools for entrepreneurs, characteristics of successful entrepreneurs, pros, and cons of self-employment, and how to attract investors and manage expenses.
	using contemporary tools.	LO5	Learn how to generate business ideas; create a business plan, mission, and vision; and promote and market a company.
		LO6	Exploring factors of business success and failure, core business concepts, economic systems, competition, production, and the global economy.
	Acquire and apply new knowledge; and practice self, lifelong and other learning strategies	L07	Apply the skills and key business concepts students need to know to plan and launch a business.
A10		LO8	Discovering the setting personal visions and goals, sales stages, opportunities, and strategies, planning and budgeting, and interpersonal communication in the workplace
		LO9	Maintain the high ethical standards of business work.
		LO10	Explain the gained knowledge orally.

Dir Instru	uctio	Indirect Instruction T							Inforr Fechn isted	ology	-				
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
1		√				√	√			√				V	

Week	Scientific content of the course (Course Topics)	Total Weekly	Expecto Lea	LOs		
No.			Theoretical	Trai	covered by	
	· · ·	Hours	teaching (lectures)	Tutorial	/ Practical Lab	course
1	The Role of the Entrepreneur: Learn about products and services, capitalism, competition, and entrepreneurship.	2	2	0	0	LO5
2	Entrepreneurship as a Career: Learn about reasons for entrepreneurship, self- employment, and entrepreneurial characteristics.	2	2	0	0	LO9
3	Economic Principles: Learn about gross and net profit, types of competition, factors of production, scarcity, and the Law of Supply and Demand.	2	2	0	0	LO1
4	Production and Delivery: Learn about fields of business activity, consumer goods, services, distribution, economic utility, economies and diseconomies of	2	2	0	0	LO4

	scale, market saturation, and the product life cycle.					
5	Small Business Basics: Learn about parts of a business, factors that contribute to success and failure, business ethics, and conflicts of interest	2	2	0	0	LO2&LO7
6	Business Ideas and Opportunities: Learn about business ideas, the role of small business in the global economy, and the importance of matching a business idea with the entrepreneur's personality and ability.	2	2	0	0	LO2&LO5
7	R	evision :	and Mid Exa	am		
8	Defining Your Business: Learn about business plans, mission and vision, and reasons to focus products and services.	2	2	0	0	LO3 , LO4&LO5
9	Business Organization: Learn about legal forms of business ownership, franchising, DBA names, trademarks, licenses/permits, taxes, organizing a business, records, and inventory control.	2	2	0	0	LO6
10	Marketing Basics: Learn about brand image factors, marketing messages, the five Ps of the marketing mix, and market research.	2	2	0	0	LO5&LO6
11	Promoting Your Company: Learn about promotional methods, advertising media's strengths and weaknesses, and marketing plan components. Identify features and benefits. Use emotions, desires, fears, and needs in advertising.	2	2	0	0	LO5
12	Sales: Learn about the principles of selling, the stages of selling, selling opportunities, and sales strategies.	2	2	0	0	LO6
13	Presentations	2	2	0	0	LO6
14	Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	QUIZ 1 written (Semester work)	4	10	10%
2	QUIZ 2 written (Semester work)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15	40	40 %
5	Assignments (Report &Sheet)	10,12	20	20%

	The main (essential) reference (must be written in full according to the scientific documentation method)	Available Presentation (handed to students' part by part).				
Learning resources (books, scientific	Other References	1-Eamonn Butler; "An Introduction to Entrepreneurship"; 2020, London Publishing Partnership 2-Teresa Chahine; Introduction to Social Entrepreneurship; 2021, CRC Press				
references, etc.) *	Electronic Sources (Links must be added)	 https://www.oreilly.com/library/view/financial-accounting-in/9780470635292/ch03sec3.html https://www.coursera.org/learn/financial-accounting https://open.umn.edu/opentextbooks/textbooks/640 				
	Learning Platforms (Links must be added)	EKB - Microsoft office				
Supportive	Devices/Instruments	Notebook and data show equipped lecture room.				
facilities & equipment	Supplies	Teaching aids and computers.				
for teaching	Skill Labs/ Simulators					
and learning *	Other (to be mentioned)	Notebook and data show equipped lecture room.				

	Course Coordinator	Program Coordinator
Name		Prof. Ahmed Abd El-Gafar
Signature		- Lideller)

Department of Basic Science

Course Specification

Course name: Scientific Thinking | Course Code: HUM 207

Department participating in delivery of the course	Basic Science
--	---------------

1. Basic information:

Course Type	Elective				Academic which the is tau	course	SENIOR 2		
Term/ Academic year	Oct	•	2025/20	2025/2026		Credit Hours:			
Contact Hours	Lecture:	2	Tutorial:	0	Lab.:	0	Total	2	
Pre-Requisite				-					
Academic standards			NARS 2018						
Bylaw	Approval		2016						
Course C	Coordinato	r	Dr./ Mustafa Muhammad Fadel						
Course Specification Approval Date			7/26/2025						
Course Specif	The division council minute of department								

2. Course Overview (Brief summary of scientific content):

The course trains students to think logically and critically and helps them to adapt and integrate in an academic environment. The student is familiarized with methods of researching and accessing information through the library or the Internet and is trained to assess the content and sources of information, reporting, and citing scientific literature, and how to maintain high ethical standards.

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	ram Outcomes (NARS/ARS) Iding to the matrix in the program specs)	Course Learning Outcomes				
(A1, A4,A5,A7,A8)		Upon co	ompletion of the course, the student will be able to:			
Code	Text	Code	Text			
	Identify, formulate, and solve complex engineering	LO 1	Identify the main steps of logically and critically scientific thinking.			
A 1	problems by applying engineering fundamentals,	LO 2	Formulate the principal methods of researching and accessing			
	basic science, and mathematics.	LO 3	Rationalize the logic scientific thinking and unlogic scientific thinking.			
	Utilize contemporary technologies, codes of practice		Utilize the principal methods of researching and accessing information through the library.			
A4	and standards, quality guidelines, health and safety requirements, environmental	LO 5	Evaluate the environmental issues, and risk management principles.			
	issues, and risk management principles.	LO 6	Assess the standard rules of researching and its quality guidelines for health and safety requirements.			
A5	Practice research techniques and methods of investigation	LO 7	Implement scientific reports depending on the scientific foundations of his study.			
AS	as an inherent part of learning.	LO 8	Control the time planning and team integration.			
A7	Function efficiently as an individual and as a member of	LO 9	Transfer the gained knowledge orally, written, and graphically.			
Ai	multi-disciplinary and multi- cultural teams.	LO 10	Acquire the ability to self-learn in engineering applications related to scientific thinking.			
	Communicate offsetively	LO 1	Obtain the steps of logically and critically scientific thinking.			
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary	LO 2	acquaint the methods of researching and accessing information through the library or the Internet.			
	tools.	LO 3	assess the content and sources of information, reporting, and citing scientific literature			

4. Course Teaching and Learning Methods:

Dir Instr	uctio		Indirect Instruction							Information Technology- Assisted Learning					
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
		√		√	V	V	V	V	V	V	V			V	√

Week	Scientific content of the course	Total	Expected nu	LOs covered		
No.	(Course Topics)	Weekly	Theoretical	Trai	by by	
	• /	Hours	teaching (lectures)	Tutorial	/ Practical Lab	course
1	The main steps of logically and critically scientific thinking	2	2	0	0	LO 1,5
2	Factors that affect scientific and innovative thinking, such as the surrounding environment.	2	2	0	0	LO 1,9
3	The principal methods of researching and accessing information through the library.	2	2	0	0	LO 1,5
4	The techniques of researching through the Internet.	2	2	0	0	LO 1,5
5	Evaluating the information and results with academic environment research.	2	2	0	0	LO 5,6
6	The methods of presentations to show the findings of scientific research	2	2	0	0	LO 6,7

7	Revision and Mid Exam									
8	Scientific analysis and linking between variables	2	2	0	0	LO 2				
9	Suggest scientific solutions to practical problems	2	2	0	0	LO 3,10				
10	levels of thinking and scientific thinking techniques	2	2	0	0	LO 4				
11	Ethical standards of scientific research.	2	2	0	0	LO 8,9				
12	The impact of innovative thinking on management in organizations and change management	2	2	0	0	LO 5				
13	Final Exam.									

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)		10	10 %
2	Exam 2 written (Semester work)		10	10 %
3	Midterm exam		20	20 %
4	Final Written Exam		40	40 %
5	Final Oral Exam		10	10 %
6	Assignments / Project /Portfolio/ Logbook		10	10 %

Learning	The main (essential)	
resources	reference	
(books,	(must be written in	Available Presentation (handed to students' part by part).
scientific	full according to the	Available Freschauon (nanded to students part by part).
references,	scientific	
etc.) *	documentation	
310.)	method)	

	Other References	 Michael E Gorman; "Scientific and Technological Thinking" 2005 by Lawrence Erlbaum Associates Richard Paul, Linda Elder: The Miniature Guide to Scientific Thinking; 2023
	Electronic Sources (Links must be added)	 https://www.youtube.com/watch?v=pOb_jKqy_s0&ab_channel=Flippin%27ScienceVideos https://study.com/learn/lesson/scientific-thinking-process-examples.html
	Learning Platforms (Links must be added)	EKB - Microsoft office
	Devices/Instruments	
Supportive	Supplies	
facilities & equipment	Electronic Programs	
for teaching and learning	Skill Labs/ Simulators	x
*	Virtual Labs	x
	Other (to be mentioned)	x

	Course Coordinator	Program Coordinator
Name	Dr./ Mustafa Muhammad Fadel	PROF. Ahmed Abdel Ghafar
Signature	Mustafa Muhammad Fadel	(المسالمفار

Course Specification

Course name:

Business Administration

Course Code: HUM 208

Department participating in delivery of the course	Basic Sciences
--	----------------

1. Basic information:

Course Type	Elective				Academic which the is tau	e course	SENIOR 2		
Term/ Academic year	Oct	•	2025/20	2025/2026		Credit Hours:		2	
Contact Hours	Lecture:	2	Tutorial:	0	Lab.:	0	Total	2	
Pre-Requisite									
Academic standards			NARS 2018						
Bylaw	Approval		2016						
Course (Coordinato	r							
Course Specification Approval Date			7/26/2025						
Course Specif	The division council minute of department								

2. Course Overview (Brief summary of scientific content):

Nature, scope, importance & characteristics of business administration, development of the managerial thought, business external & internal environments, types of institutions, the managerial process. Functions of management: planning: planning concepts & importance, types of plans, characteristics & contents of the plan, planning stages, budgeting for planning. Organization: organization concepts & importance, characteristics of good & effective organization, types of organization structures, centralization & decentralization, span of supervision, delegation of authority, integration among the different units in the organization. Direction & supervision: Motivation, communications leadership & its different types. Control: concept & importance of control, control steps, objectives, actual performance, the deviation, reasons of the deviation, the corrective actions, types of control, internal & external control. Decision

Making: Types of administrative decisions, decision -making process & steps, importance of information of decision making. Major functions in different companies: production, marketing, finance, human resources.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (NARS/ARS).

	ram Outcomes (NARS/ARS) ding to the matrix in the program specs)	(Course Learning Outcomes		
	(A7,A8,A10)	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
	Function efficiently as an individual and as a member of	L01	Describe the main steps of strategic plans using marketing information		
A7	multi-disciplinary and multi- cultural teams.	LO2	Understand the role of information technology systems (IT) in supporting business operations		
		LO3	Elucidate the principal of Functions of management: planning: planning concepts & importance, types of plans, characteristics & contents of the plan, planning stages, budgeting for planning.		
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	LO4	Explicate the fundamentals of organization work: organization concepts & importance, characteristics of good & effective organization, types of organization structures, centralization & decentralization, span of supervision, delegation of authority, integration among the different units in the organization.		
		LO5	Evaluating between Direction & supervision: Motivation, communications leadership & its different types.		
		LO6	Assess the Control: concept & importance of control, control steps, objectives, actual performance, the deviation, reasons of the deviation, the corrective actions, types of control, internal & external control.		
A10	Acquire and apply new knowledge; and practice self, lifelong and other learning	LO7	Evaluate the decision Making: Types of administrative decisions, decision -making process & steps, importance of information of decision making.		
	strategies	LO8	Identify the major functions in different companies: production, marketing, finance, human resources.		
		LO9	Maintain the high ethical standards of business work.		
		LO10	Explain the gained knowledge orally.		

1. Course Teaching and Learning Methods:

Dir Instru	uctio	Indirect Instruction						Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
		√				√	√			√				V	

Week	Scientific content of the course	Total	Expecte Lea	LOs		
No.	(Course Topics)	Weekly	Theoretical	Trai	covered by	
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	course
1	An overview of the administrative process.	2	2	0	0	LO5
2	The nature of the projects and their objectives	2	2	0	0	LO9
3	An overview of management functions and facility functions.	2	2	0	0	LO1
4	Factors affecting the performance of the facility.	2	2	0	0	LO4
5	Planning function	2	2	0	0	LO2&LO7
6	Regulation function	2	2	0	0	LO2&LO5
7	R	Revision	and Mid Exa	am		

8	Orientation function	2	2	0	0	LO3, LO4&LO5
9	Control function.	2	2	0	0	LO6
10	Management levels and skills required for each level.	2	2	0	0	LO5&LO6
11	Administrative communication process.	2	2	0	0	LO5
12	Supplementary materials and Quiz	2	2	0	0	LO6
13	Presentations	2	2	0	0	LO6
14		Fin	al Exam.	•		•

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	QUIZ 1 written (Semester work)	4	10	10%
2	QUIZ 2 written (Semester work)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15	40	40 %
5	Assignments (Report &Sheet)	10,12	20	20%

	The main (essential) reference (must be written in full according to the scientific documentation method)	Available Presentation (handed to students' part by part).			
Learning resources (books, scientific references, etc.) *	Other References	1-Mohamed Abdallah Abd El Rehim, Fundamental of Management & Organization, Cairo University.2022 2-El Desouky Hamed Abou Zeid, the Scientific Fundamentals of Management, Cairo University.2022			
0.0.1)	Electronic Sources (Links must be added)	 https://www.ecpi.edu/blog/what-is- business-administration-all-about https://www.edx.org/learn/business- administration 			

	Learning Platforms (Links must be added)	EKB - Microsoft office			
Supportive facilities &	Devices/Instruments	Notebook and data show equipped lecture room.			
equipment	Supplies	Teaching aids and computers.			
for	Skill Labs/ Simulators				
teaching and learning *	Other (to be mentioned)	Notebook and data show equipped lecture room.			

	Course Coordinator	Program Coordinator
Name		Prof. Ahmed Abd El-Gafar
Signature		- Liebler)

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Thermo Fluid Lab for Mechatronics				
Course Code (according to the bylaw):	MEC 272				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)		<u>3</u>		<u>3</u>	
Course Type:	Compulsory				
The level to which the course was introduced:	SENIOR 2				
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>		
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Ahmed	l Shabban			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	e: 8/12/2025				

2. Course Overview (Brief summary of scientific content):

Safety Instructions -Introduction and types of fluid meters, velocity measurements, flow rate measurements. Types of tests and measuring instruments in ICE. Ignition timing measurements, compression pressure test. Exhaust gas analysis, engine analyzer. Refrigeration cycle, performance, coefficient of performance. Air conditioning systems, Performance, coefficient of performance.

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	ogram Outcomes (ARS) ding to the matrix in the program specs)	Ce	ourse Learning Outcomes
		Upon comp	letion of the course, the student will be able to:
Code	Text	Code	Text
	Develop and conduct appropriate experimentation and/or simulation, analyze	LO1	Conduct experiments related to fluid mechanics, including pressure, velocity, and flow rate measurements.
A2	and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO2	Design and conducting experiments to evaluate the performance of pumps and turbines.
A4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	LO3	Apply health, safety, and environmental rules during laboratory experiments.
	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat	LO4	Analyze the performance of a refrigeration cycle by applying concepts of thermodynamics, heat transfer, and fluid mechanics.
B1	Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations.	LO5	Analyze the performance of internal combustion engines (ICE) by applying concepts of thermodynamics, heat transfer, and fluid mechanics.

4. Course Teaching and Learning Methods:

Dir Instr	uctio	Indirect Instruction						Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
V	V	V	V			$\sqrt{}$	V			V					

Week	Scientific content of the course	Total	Expected number of the Learning Hours					
No.	(Course Topics)	Weekly	Theoretical	Trai	ning			
	• ′	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Introduction to the laboratory: Health and safety instructions.	3			3	-		
2	Experiment of hydrostatic pressure force	3			3	-		
3	Experiment of pressure measurement and calibration	3			3	-		
4	Experiment of Extended surface area (Fins).	3			3	-		
5	Experiment of tubular Heat Exchanger.	3			3	-		
6	Experiment of the plunger Pump.	3	1	-1	3	-		
7	Revision and Mid Exam							
8	Revision for part 1. (Mini Project)	3			3	-		

9	Experiment of the gear Pump.	3	-1		3	-	
10	Experiment of refrigeration unit.	3	1		3	-	
11	Experiment of refrigeration unit.	3	1		3	-	
12	Experiment of internal Combustion Engine	3	1		3	-	
13	Experiment of internal Combustion Engine	3	-1		3	-	
14	Revision for part 2. (Mini Project)	3			3	-	
15,16	Final Exam.						

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	11	10	10%
2	Midterm exam	7	30	30 %
4	Final Written Exam	15, 16	30	30 %
7	Assignments / Project /Portfolio/ Logbook	Through	30	30 %
		semester		

	The main (essential) reference (must be written in full according to the scientific documentation method)	Yunus A. Çengel, John M. Cimbala and Afshin J. Ghajar, "Fundamentals of Thermal-Fluid Sciences" Sixth Edition, Mcgraw-Hill, New York, 2021.
Learning resources (books, scientific references, etc.) *	Other References	Yunus A. Cengel and Michael A. Boles "THERMODYNAMICS: An Engineering Approach" McGraw-Hill, New York., Eighth Edition, 2015 Course Notes: Available as soft copy on Microsoft teams
	Electronic Sources (Links must be added)	
	Learning Platforms (Links must be added)	EKB - Microsoft office
	Devices/Instruments	Data show and laptop

Supportive	Supplies	White board
facilities &	Electronic Programs	Microsoft teams
equipment	Skill Labs/ Simulators	non
for teaching	Virtual Labs	non
and learning *	Other (to be mentioned)	Library

	Course Coordinator	Program Coordinator
Name	Dr. Ahmed Shabban	Dr. Ahmed Abdalbadia
Signature	A)1=	Enllus

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Fluid Power Control				
Course Code (according to the bylaw):	MTE 251				
Department/s that participated in the teaching:	Mechanica	al Enginee	ring		
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	<u>3</u>	<u>1</u>		4	
Course Type:	Compulsory				
The level to which the course was introduced:		SENIC	OR 2		
Academic Program:	<u>Mechatron</u>	nics Engine	eering		
Institute:	Higher Technological Institute				
Name of Course Coordinator:	Dr. Radwa A. Ghazalla				
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Introduction to fluid power. Physical properties of hydraulic fluids. Energy & Power in Hydraulic systems. Fluid power control systems. Basics of hydraulic flow in pipelines. Source of hydraulic Power (Pumps). Hydraulic actuators and motors. Valves and other Control components in hydraulic systems. Hydraulic circuit design and analysis. Introduction to pneumatic systems. Component, circuits and applications- Fluid logic control systems. Electrical control for fluid power circuits

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acco	Program Outcomes (ARS) ording to the matrix in the program specs)	Course Learning Outcomes		
	A1,D1,D2	Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
		LO1	Identify the different flow processes in power generation industries by applying governing equations.	
A 1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics.	LO2	Differentiate between common hydraulic and pneumatic components (pumps, actuators, motors, valves, etc.), including their uses, symbols, and performance characteristics.	
		LO3	Apply the fundamentals of mathematics, science, and engineering to solve problems related to fluid power and energy systems.	
D1	Integrate a wide range of analytical tools , techniques , equipment , and software pacakage to design and develop mechatronics systems	LO4	Analyze engineering problems using modern techniques, skills, and tools necessary for professional engineering practice.	
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design	LO5	Design projects that familiarize students with actual components and fluid power circuits commonly used in industrial applications.	

4. Course Teaching and Learning Methods:

Dir Instr	uctio		Indirect Instruction Indirect Instruction Assisted Learn						-						
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V				V	1			$\sqrt{}$		V			

Week	Scientific content of the course	Total	Expected	Expected number of the Lea			
No.	(Course Topics)	Weekly Hours	Theoretical	Tra	ining		
		Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other	
1	Introduction to fluid power; History, applications, advantages and limitations; General components of fluid power systems	4	1	2	1	-	
2	Physical properties of hydraulic fluids;	4	1	2	1	-	
3	Introduction to hydraulic systems design; Energy and power in hydraulic systems;	4	1	2	1	-	
4	Frictional losses in hydraulic pipelines	4	1	2	1	-	
5	Hydraulic Pumps; pumping theory, gear	4	1	2	1	-	
6	Hydraulic Pumps; vane, and piston pumps; pump specifications, performance and selection;+ Quiz	4	2	2	0	-	
7	Revision and Mid Exam						
8	Hydraulic Cylinders, Motors, and Rotary Actuators.	4	1	2	1	-	

9	Control Components: directional control valves, pressure control valves, flow control valves, servo valves, proportional valves	4	1	2	1	-
10	circuit components: reservoirs, accumulators, conductors and fittings; Hydraulic fluids, contamination and filtration	4	1	2	1	-
11	Hydraulic circuit design and analysis	4	1	2	1	-
12	Hydraulic circuit design and analysis + Quiz	4	2	2	0	-
13	Simulation for circuits and discussion for practical scenarios	4	1	0	3	-
14	Revision for part 1 and 2	4	2	2	0	-
15,16	Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	6	10	10%
2	Exam 2 written (Semester work)	12	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
6	Oral Discussions during the lectures	Through out	10	10%
	(participating)	the semesster		
7	Assignments / Project /Portfolio/ Logbook	14	10	10%

Learning resources	The main (essential) reference (must be written in full according to the scientific documentation method)	Anthony Esposito ,"Fluid Power with Applications"; 7th Edition,2020
(books, scientific references, etc.) *	Other References	James A. Sullivan and David M. Mazurek, "Fluid Power: Theory and Applications", 6th Edition, Cengage Learning, 2022

		Rory S. McLaren, "Hydraulics and Pneumatics: A Technician's and Engineer's
	Electronic Sources (Links must be added)	Guide", 3rd Edition, Elsevier, 2021. Festo Didactic – Fluid Power Training Resources https://www.festo-didactic.com/int-en/learning-systems/hydraulics Hydraulics & Pneumatics Magazine (Articles & Case Studies) https://www.hydraulicspneumatics.com
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	Lab tops
facilities &	Supplies	non
equipment for	Electronic Programs	Automation Studio and Festo (Fluid Sim)
teaching	Skill Labs/ Simulators	Mechatronics Actuator Lab and PLC Lab
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr. Radwa A. Ghazalla	Dr. Ahmed Abdalbadia
Signature	Radwa	Paraullies

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Mechatronics & Smart Materials			<u>erials</u>
Course Code (according to the bylaw):	MTE 257			
Department/s that participated in the teaching:	Mechanica	al Enginee	ring	
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>2</u>			2
Course Type:		Compu	lsory	
The level to which the course was introduced:		SENIC	OR 1	
Academic Program:	Mec	hatronics	<u>Engineeri</u>	<u>ng</u>
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Dr. Hossai	m Ramada	<u>n</u>	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

Selected topics on commonly used special materials, Fundementals of Materials Engineering, Smart Materials, Shape Memory Materials and Its Applications, Piezoelectric Materials and Its Applications, Magnetostrictive Materials and Its Applications.

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes		
	A1,A6,B1,B3	Upon co	mpletion of the course, the student will be able to:	
Code	Text	Code	Text	
A1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	LO1	Identify the key concepts of smartness in relation to smart materials and smart systems.	
A6	Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	LO2	Recognize the differences between various smart material effects.	
B1	Model, analyze and design physical systems applicable to the specific discipline by applying the concepts of: Thermodynamics, Heat Transfer, Fluid Mechanics, solid Mechanics, Material Processing, Material Properties, Measurements, Instrumentation, Control Theory and Systems, Mechanical Design and Analysis, Dynamics and Vibrations.	LO3	Analyze the effects and responses of smart materials.	
В3	Select conventional mechanical equipment according to the required performance	LO4	Explain the concept, manufacturing technologies, properties, types, and applications of selected smart materials.	

4. Course Teaching and Learning Methods:

Dir Instr	uctio		Indirect Instruction				Information Technology- Assisted Learning								
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
		1	V			V									

Week	Scientific content of the course	Total	Expected	Expected number of the Learning Hours				
No.	(Course Topics)	Weekly	Theoretical	Trai	ining			
	(Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other		
1	Revision on Fundamentals of Materials Engineering.	2	1	1	-	-		
2	Introduction to Smart Materials.	2	1	1	-			
3	Shape Memory Materials and Its Applications.	2	1	1	-	-		
4	Shape Memory Materials and Its Applications.	2	1	1	-	-		
5	Shape Memory Materials and Its Applications.	2	1	1	-	-		
6	Piezoelectric Materials and Its Applications.	2	1	1	-	-		
7	R	evision a	and Mid Exa	m				
8	Piezoelectric Materials and Its Applications.	2	1	1	-	-		
9	Piezoelectric Materials and Its Applications.	2	1	1	-	-		
10	Piezoelectric Materials and Its Applications.	2	1	1	-	-		

11	Magnetostrictive Materials and Its Applications.	2	1	1	-	-
12	Magnetostrictive Materials and Its Applications.	2	1	1	-	-
13	Magnetostrictive Materials and Its Applications.	2	1	1	-	-
14	Revision.	2	1	1	-	-
15,16	Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	11	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	According to schedule	20	20%

<u>6-</u>

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	JULIE BARKER, FOUNDATIONS OF MATERIALS SCIENCE AND ENGINEER,2023
scientific	Other References	
references, etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	NON
facilities & equipment	Supplies	NON
for	Electronic Programs	NON
teaching	Skill Labs/ Simulators	NON
and	Virtual Labs	NON
learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Dr. Hossam Ramadan	Dr. Ahmed Abdalbadia
Signature	Hossam Ramadan	Paraulling

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Micro-Mechatronics Systems			
Course Code (according to the bylaw):	MTE E07			
Department/s that participated in the teaching:	<u>Me</u>	chanical E	ngineering	1
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	4			<u>4</u>
Course Type:		Elect	ive	
The level to which the course was introduced:	SENIOR 1			
Academic Program:	<u>Me</u>	chanical E	ngineering	<u>a</u>
Institute:	Highe	r Technolo	gical Insti	tute
Name of Course Coordinator:	Dr. Mina Raafat			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			rtment
Course Specification Approval Date:		8/12/2	025	

2. Course Overview (Brief summary of scientific content):

Introduction to MMS, Physical background – Manufacturing – Applications - Modern trends.

3. Course Learning Outcomes CLOs:

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(;	Program Outcomes (ARS) according to the matrix in the program specs)	Course Learning Outcomes			
	A2,A4,A10,D1,D2	Upon completion of the course, the student will be able to:			
Code	Text	Code	Text		
A2	Develop and conduct appropriate experimentation and/or simulation, analyze and interpret data, assess and evaluate findings, and use statistical analyses and objective engineering judgment to draw conclusions.	LO1	Conduct simulations of parameters of micromechatronic components and systems		
A4	Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles	LO2	Apply modern manufacturing and fabrication techniques in micro-system design with awareness of safety, quality, and environmental considerations		
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies	LO3	Research current trends and future technologies in MMS through independent learning		
D1	Integrate a wide range of analytical tools, techniques, equipment, and software packages to design and develop mechatronics systems	LO4	Use modeling tools for simulation of MMS's behavior components		
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design	LO5	Design micro-scale sensors/actuators and application suitability		

4. Course Teaching and Learning Methods:

Direct Instructio	Indirect Instruction	Information Technology-
n		Assisted Learning

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
$\sqrt{}$		V			V	$\sqrt{}$	1			$\sqrt{}$					

Week	Scientific content of the course	Total	Expected	number of	the Learning	J Hours
No.	(Course Topics)	Weekly Hours	Theoretical teaching	Trai	Other	
			(lectures)	Tutorial	/ Practical Lab	Other
1	Introduction to Micro- Mechatronics Systems	4	2	2	0	-
2	Fundamentals of Micro-scale Physics (fluidics, thermal, electrical, mechanical)	4	2	2	0	-
3	Overview of MMS Architecture and Components (sensors, actuators, control)	4	2	2	0	-
4	MEMS Materials and Material Properties	4	2	2	0	-
5	MMS Manufacturing Techniques: Lithography, Bulk/SOI Micromachining	4	2	2	0	
6	Micro-Fabrication Case Studies (Accelerometers, Micro-pumps)	4	2	2	0	•
7	R	evision a	and Mid Exa	m		
8	Integration with Electronics (ASIC, SOC, Hybrid Packaging)	4	2	2	0	-
9	System Modeling and Simulation (e.g. ANSYS, COMSOL, CoventorWare)	4	2	2	0	-
10	Control in Micro- Mechatronics (feedback, nonlinearities, system response)	4	2	2	0	-

11	Applications in Biomedical, Automotive, Aerospace	4	2	2	0	-				
12	Testing, Reliability, and Performance Evaluation of MMS	4	2	2	0	-				
13	Emerging Trends: Soft Micro-Robotics, Micro-assembly, AI Integration	4	2	2	0	•				
14	Student Projects + Presentations +	4	2	2	0	•				
15,16	Final Exam.									

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	4	10	10%
2	Exam 2 written (Semester work)	12	10	10%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	1-13	20	20%

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	"Mechatronics: Concepts, Tools, Applications, and New Trends" Authors: Ajay Kumar, Parveen Kumar, Sarita Rathee, Brijesh Kumar(2025)
resources (books, scientific references, etc.) *	Other References	"Mechatronics: Fundamentals and Applications" Editors: Mizanur Rahman, Farhan Mahbub, Rumana Tasnim, Rezwan Us Saleheen(2024)
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	laptop
facilities & equipment	Supplies	Project components
for	Electronic Programs	ANSYS
teaching	Skill Labs/ Simulators	non
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr. Mina Raafat	Dr. Ahmed Abd Elbade
Signature	Mina Raafat	Paraulling

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Actuators & drivers				
Course Code (according to the bylaw):	MTE E08				
Department/s that participated in the teaching:	Mechanical Engineering				
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total	
(according to the bylaw)	4			4	
Course Type:	Elective				
The level to which the course was introduced:	SENIOR 2				
Academic Program:	Mec	hatronics	<u>Engineerir</u>	ng	
Institute:	Highe	r Technolo	gical Insti	tute	
Name of Course Coordinator:	Dr.	Ahmed A	bu El -FAD	<u>l</u>	
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department				
Course Specification Approval Date:	8/12/2025				

2. Course Overview (Brief summary of scientific content):

Power electronics, electric drives, electrical models, dimensioning, pneumatic & hydraulic actuators, sensors & circuits, control design, circuit diagram design, thermal initiated actuators, piezoelectric actuators, micro actuators.

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

(acco	Program Outcomes (ARS) ording to the matrix in the program specs)	Course Learning Outcomes				
	A1,A3,D2,D3.D4	Upon completion of the course, the student will be able to:				
Code	Text	Code	Text			
A 1	Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science, and mathematics.	LO1	Identify power electronics elements, electric drives, and electrical models.			
	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration	LO2	Design and selection of sensors and accompanying circuitry.			
A3	for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	LO3	Carry out designs of sensors and actuators.			
D2	Design, model and analyze an electrical/electronic/digital/mechatronics system or component for a specific application; and identify the tools required to optimize this design	LO4	Analyze the electrical, hydraulic, and pneumatic actuators.			
D3	Plan, manage, and implement designs of mechatronics systems, subsystems, modules, and machine elements based on traditional and contemporary technological, professional, and computer-aided tools.	LO5	Model of the thermal, piezoelectric, and micro-actuators			
D4	Estimate and measure the performance of an electrical/ electronic/ digital/ mechatronics system under specific input excitation, and evaluate its suitability for a specific application.	LO6	Estimate control resolution.			

4. Course Teaching and Learning Methods:

Instr	Direct Instructio Indirect Instruction							Information Technology- Assisted Learning							
Lectures	Tutorial / Practical	Brain Storming							Simulation Programs	Virtual labs	E-Learning	Al in Education			
$\sqrt{}$						V	V								

Week	Scientific content of the course	Total	Expected number of the Learning Hours						
No.	(Course Topics)	Weekly Hours	Theoretical teaching	Trai	Other				
			(lectures)	Tutorial	/ Practical Lab				
1	Power electronics	4	2	2	0	-			
2	Electric drives	4	2	2	0	-			
3	Electrical models	4	2	2	0	-			
4	Dimensioning	4	2	2	0	-			
5	Electrical actuators	4	2	2	0	-			
6	Pneumatic actuators	4	2	2	0	-			
7	I	Revision	and Mid Ex	am					
8	Hydraulic actuators	4	2	2	0	-			
9	Sensors & circuits	4	2	2	0	-			
10	Control design	4	2	2	0	-			
11	Circuit diagram design	4	2	2	0	-			
12	Thermal initiated actuators	4	2	2	0	-			

13	Piezoelectric actuators	4	2	2	0	-			
14	Micro actuators	4	2	2	0	-			
15,16	Final Exam.								

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	15	15 %
2	Exam 2 written (Semester work)	10	15	15 %
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	10	10%

Learning resources (books, scientific references, etc.) *	The main (essential) reference (must be written in full according to the scientific documentation method)	Robert H. Bishop, "Mechatronic systems, sensors and actuators ",CRC press.
	Other References	David H.Staelin, "Electromagnetics and applications", Libretexts.
	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	non
facilities &	Supplies	non
equipment for	Electronic Programs	non
teaching	Skill Labs/ Simulators	non
and	Virtual Labs	non
learning *	Other (to be mentioned)	non

	Course Coordinator	Program Coordinator
Name	Dr.Ahmed Abu El -FADl	Dr. Ahmed Abdalbadia
Signature	Ahmed fadl	Serenties

Course Specification

1. Basic information:

Course Title (according to the bylaw):	according to the bylaw): Selected Topics in Administration Mechatronics System Mechatron			
Course Code (according to the bylaw):	MTE E09			
Department/s that participated in the teaching:	Me	chanical E	ingineering	1
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)	<u>4</u>			<u>4</u>
Course Type:	Elective			
The level to which the course was introduced:		SENIC	DR 2	
Academic Program:	Mechatronics Engineering			
Institute:	Higher Technological Institute			
Name of Course Coordinator:	DR.AHMED SAMIR			
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			rtment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

Modern applications of Mechatronics, Modern trends in Mechatronics Engineering and/or a real problem in industry related to Mechatronics.

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

	rogram Outcomes (ARS) ding to the matrix in the program specs)	Course Learning Outcomes		
	A3,A9,A10,D1	Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
А3	Apply engineering design processes to produce cost-effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical, and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development	LO1	Apply sustainable and cost-effective design approaches to propose solutions for real mechatronics system problems in industry.	
А9	Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations	LO2	Demonstrate creativity and innovation in addressing emerging challenges in advanced mechatronics systems	
A10	Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	LO3	Research and evaluation of cutting-edge technologies and trends in mechatronics through independent study.	
D1	Integrate a wide range of analytical tools, techniques, equipment, and software packages to design and develop mechatronics systems.	LO4	Develop innovative mechatronic system concepts using current modeling, simulation, and prototyping technologies.	

4. Course Teaching and Learning Methods:

Direct Instructio	Indirect Instruction	Information Technology-
n		Assisted Learning

Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	AI in Education
$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	√	$\sqrt{}$	\			√		√			$\sqrt{}$

Week	Scientific content of the course	Total	Expected	number of the Learning Hours			
No.	(Course Topics)	Weekly	Theoretical	Trai			
	• /	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other	
1	Introduction to Advanced Mechatronics	4	2	2	0	-	
2	Overview of Emerging Mechatronics Technologies	4	2	2	0	-	
3	Smart Sensors and Intelligent Actuators	4	2	2	0	•	
4	AI and Machine Learning in Mechatronics	4	2	2	0	-	
5	Mechatronic System Integration & Cyber-Physical Systems	4	2	2	0	-	
6	Mechatronics in Automotive / Medical / Aerospace Fields	4	2	2	0	-	
7	R	evision a	and Mid Exa	m			
8	Industrial Case Studies (Problem Exploration)	4	2	2	0	-	
9	Sustainable and Cost-Aware System Design	4	2	2	0	-	
10	Creativity and Innovation in Mechatronics	4	2	2	0	-	
11	Ideation Workshop: Solving Real Industry Problems	4	2	2	0	-	
12	Tools for Modeling and Simulation (MATLAB, Simulink, CAD/CAE)	4	2	2	0	-	

13	Project Review and Feedback	4	2	2	0	-
14	Final Presentations + Trends Summary	4	2	2	0	-
15,16	Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	15	15%
2	Exam 2 written (Semester work)	10	15	15%
3	Midterm exam	7	20	20 %
4	Final Written Exam	15, 16	40	40 %
7	Assignments / Project /Portfolio/ Logbook	12	10	10%

Learning resources (books,	The main (essential) reference (must be written in full according to the scientific documentation method)	Advanced Mechatronics Systems: Modeling, Design and Control (2021) Author: Tao Zheng, Ahmad Taher Azar, Sundarapandian Vaidyanathan		
scientific references,	Other References			
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office		
	Devices/Instruments	Laptop		
Supportive	Supplies	NON		
facilities & equipment for teaching and	Electronic Programs	MATLAB/Simulink SolidWorks Arduino Ansys / COMSOL (for multiphysics simulation)		
learning *	Skill Labs/ Simulators	NON		
9	Virtual Labs	NON		
	Other (to be mentioned)	NON		

	Course Coordinator	Program Coordinator
Name	DR.AHMED SAMIR	Dr. Ahmed Abdalbadia
Signature	AHMED SAMJR	Survey

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Actuators Lab			
Course Code (according to the bylaw):	MTE 252			
Department/s that participated in the teaching:	Mechanic	al Engine	ering Dep	t.
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)		<u>3</u>		<u>3</u>
Course Type:		Compu	lsory	
The level to which the course was introduced:		SENIC)R 2	
Academic Program:	Me	chatronics	Engineerin	g
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Assoc.	<mark>Prof. Dr. N</mark>	<mark>Iona A. Y</mark>	<mark>ounis</mark>
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

 $Safety\ Instructions\ -\ Introduction\ Mechanical\ actuators\ -\ Hydraulic\ \&\ Pneumatic\ actuators\ -\ Electrical\ actuators\ -\ A.C.\ motors\ -\ Servo\ motors\ -\ stepper\ motors\ -\ PLC\ Control\ of\ the\ actuators.$

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		(Course Learning Outcomes	
		Upon completion of the course, the student will be able to:		
Code	Text	Code	Text	
	Practice research	LO1.	Analyze some industrial problems and design the suitable circuit.	
A5	techniques and methods of investigation as an inherent part of learning.	LO2.	Distinguish the different types of actuators and thier functions and the working theory of each.	
A6	Plan, supervise and monitor implementation of engineering projects, taking		Get general knowledge about actuators field and how they can be used safely.	
p p		LO4.	Determine the mechanical and electrical loads in designed circuit to apply it physically.	
A 7	Function efficiently as an individual and as a member	LO5.	Select the suitable actuators and sensors.	
127	of multi-disciplinary and multi- cultural teams.	LO6.	Select the design method if it classical or digital by means of PLC.	
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.	L07.	Apply exiperiments using hardware components to validating the design and making sure that goes well and documentation.	

D3	Plan, manage, and implement designs of mechatronics systems, subsystems, modules, and machine elements based on traditional and contemporary technological, professional, and computer-aided tools.	LO8.	Apply experiments using software to testing different circuit designs and exporting cad design for control circuit.
----	---	------	---

4. Course Teaching and Learning Methods:

Dir Instr	uctio		Indirect Instruction								nation ology Learn	-			
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	V	V	V		V	V	$\sqrt{}$						V		V

Week	Scientific content of the course	Total	Expected	number of	the Learning	J Hours
No.	(Course Topics)	Weekly	Theoretical	Trai	ning	
	Hours	teaching (lectures)	Tutorial	/ Practical Lab	Other	
1	Safety Instructions.	3	-	-	3	-
2	-Introduction to Mechanical actuators -Hydraulic and Pneumatic actuators	3	-	-	3	-
3	Electrical actuators (AC, DC, Servo and stepper motor).	3	-	-	3	-

4	Introduction to classic control.	3	-	-	3	-
5	Design of control circuits using software.	3	-	-	3	1
6	Implementing designs into hardware components	3	-	-	3	1
7	R	evision a	and Mid Exa	m		
8	Introduction to PLC	3	-	-	3	-
9	PLC GIO & Ladder logic	3	-	-	3	-
10	PLC GIO & Ladder logic	3	-	-	3	-
11	PLC Timers & Counters	3	-	-	3	-
12	-PLC Analog input (Analog sensors)	3	-	-	3	-
13	PID	3	-	-	3	-
14	PID	3	-	-	3	-
15,16	Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Exam 1 written (Semester work)	5	15	15%
2	Exam 2 written (Semester work)	10	15	15%
3	Midterm exam	7	20	20 %
5	Final Practical/Clinical/ Exam	15,16	30	30%
7	Assignments / Project /Portfolio/ Logbook	12	25	25%

Learning resources (books, scientific	I must be written in till according to	Bolton, W. (2021). Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering (7th Edition).
---------------------------------------	--	--

references, etc.) *	Other References	Mikell P. Groover (2020). Automation, Production Systems, and Computer- Integrated Manufacturing (5th Edition).
Supportive facilities & equipment for teaching and learning *	Devices/Instruments	Hydraulic trainer kit (cylinders, pumps, valves) Pneumatic trainer kit (cylinders, compressors, air valves) DC motors, AC motors, servo motors, stepper motors PLC kits

	Course Coordinator	Program Coordinator
Name	Assoc. Mona A. Younis	Dr. Ahmed abd el badii
Signature	MONA A. YOUNIS	Serenties

Course Specification

1. Basic information:

Course Title (according to the bylaw):	Field Training 4			
Course Code (according to the bylaw):	FTR 261			
Department/s that participated in the teaching:	<u>Me</u>	chanical E	ngineerin	<u>a</u>
Total number of credit hours of the course:	Theoretical	Practical	Other (specify)	Total
(according to the bylaw)		<u>18</u>		<u>18</u>
Course Type:		Compu	lsory	
The level to which the course was introduced:		SENIC	OR 2	
Academic Program:	<u>Mechatron</u>	nics Engine	<u>eering</u>	
Institute:	Highe	r Technolo	gical Inst	itute
Name of Course Coordinator:	Assoc. Pro	of. Dr. Mon	a A. Youn	i <u>s</u>
Course Specification Approval (Attach the decision/minutes of the department /committee/council)	The division council minute of department			artment
Course Specification Approval Date:	8/12/2025			

2. Course Overview (Brief summary of scientific content):

The student operates an integrated system or part of it, within a production unit in his area of specialization and participates in system maintenance and fault diagnosis. He also studies the techniques and tests required for the quality control of the product. Duration of the industrial training is eighteen hours per week over a minimum of five days for one academic term.

Matrix of course learning outcomes CLOs with program outcomes POs (ARS).

Program Outcomes (ARS) (according to the matrix in the program specs)		Course Learning Outcomes	
	A5, A7, A8, A9, B4, D4	Upo	on completion of the course, the student will be able to:
Code	Text	Code	Text
A5	Practice research techniques and methods of investigation as an inherent part of learning.	LO1	Write a technical report for the field training.
A7	Function efficiently as an individual and as a member of multi-disciplinary and multi- cultural teams.	LO2	Develop new skills and obtaining knowledge to handle unfamiliar tasks more effectively in the future.
A8	Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools	LO3	Integrate academic knowledge with practical experience gained during training.
A9	Use creative, innovative, and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	LO4	Demonstrate the value of work, time management, and teamwork, and practice professional attitudes.
B4	Adopt suitable national and international standards and codes; and integrate legal, economic and financial aspects to: design, build, operate, inspect and maintain mechanical equipment and systems	LO5	Apply national and international standards and codes in engineering practice.
D4	Estimate and measure the performance of an electrical/electronic/digital/mechatronics system under specific input excitation,	LO6	Design mechatronics systems using appropriate tools and software.

4. Course Teaching and Learning Methods:

Instr	Direct Instructio Indirect Instruction						Information Technology- Assisted Learning								
Lectures	Tutorial / Practical	Brain Storming	Project based learning	Case Study	Problem Base Learning	Reports & Research	Discussion	Field Training	Site Visit	Self-Learning	Discovery Learning	Simulation Programs	Virtual labs	E-Learning	Al in Education
	$\sqrt{}$	V				V	V		V	V	√				

	Scientific content of the course (Course Topics)	Total Weekly Hours	Expected Lear	LOs			
Week No.			Theoretical	Tra	ining	covered by course	
	• /		teaching (lectures)	Tutorial	Practical /Lab		
	Train on the overall mechanical process						
	Train on reading overall flowsheet of the process Train on reading overall flowsheet of the process						
As	Midterm Report and Oral Exam	18					
scheduled	Carry out research using granted internet sites for references related to student's 2 training process						
	Write technical report						
		Final Exam.					

No.	Assessment Methods *	Assessment Timing (Week Number)	Marks/ Scores	Percentage of total course Marks
1	Attendance		10	10%
2	End of term Oral exam		30	30%
3	Midterm Report (Term Work)	As scheduled	20	20 %
4	Final Report (written)	AS scheduled	20	20 %
5	Follow up		20	20 %

Learning	The main (essential) reference (must be written in full according to the scientific documentation method)	Depend on the case/ technical writing booking
resources (books,	Other References	Hand out to students one by one
scientific references,	Electronic Sources (Links must be added)	
etc.) *	Learning Platforms (Links must be added)	EKB - Microsoft office
Supportive	Devices/Instruments	NON
facilities &	Supplies	NON
equipment for	Electronic Programs	NON
teaching	Skill Labs/ Simulators	NON
and	Virtual Labs	NON
learning *	Other (to be mentioned)	NON

	Course Coordinator	Program Coordinator
Name	Assoc. Mona A. Younis	Dr. Ahmed Abdelbadea
Signature	MONA A. YOUNIS	Sersullies